Datasets:
Alvant
commited on
Commit
·
12ad2b5
1
Parent(s):
bb097b6
add preproc notebook
Browse files
preprocessing/20NG-Preprocessing.ipynb
ADDED
|
@@ -0,0 +1,699 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# 20NG (Twenty Newsgroups). Preprocessing\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Here goes an example of data preprocessing and converting it to TopicNet's Dataset format.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"* Example of a toy dataset: [test_dataset.csv](https://github.com/machine-intelligence-laboratory/TopicNet/blob/master/topicnet/tests/test_data/test_dataset.csv)\n",
|
| 12 |
+
"* Dataset source file (with some explanations in docstring): [dataset.py](https://github.com/machine-intelligence-laboratory/TopicNet/blob/master/topicnet/cooking_machine/dataset.py)"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "markdown",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"source": [
|
| 19 |
+
"# Contents<a id=\"contents\"></a>\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"* [Loading data](#data-loading)\n",
|
| 22 |
+
"* [Preparing data](#data-preparation)"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 45,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"import numpy as np\n",
|
| 32 |
+
"import pandas as pd\n",
|
| 33 |
+
"import re\n",
|
| 34 |
+
"import shutil\n",
|
| 35 |
+
"import string\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"from collections import Counter\n",
|
| 38 |
+
"from glob import glob\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"from sklearn import datasets\n",
|
| 41 |
+
"from sklearn.datasets import fetch_20newsgroups"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"outputs": [],
|
| 49 |
+
"source": [
|
| 50 |
+
"import nltk\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"from nltk.collocations import (\n",
|
| 53 |
+
" BigramAssocMeasures,\n",
|
| 54 |
+
" BigramCollocationFinder,\n",
|
| 55 |
+
")\n",
|
| 56 |
+
"from nltk.corpus import (\n",
|
| 57 |
+
" stopwords,\n",
|
| 58 |
+
" wordnet,\n",
|
| 59 |
+
")\n",
|
| 60 |
+
"from nltk.stem import WordNetLemmatizer"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "code",
|
| 65 |
+
"execution_count": 2,
|
| 66 |
+
"metadata": {},
|
| 67 |
+
"outputs": [],
|
| 68 |
+
"source": [
|
| 69 |
+
"import matplotlib.pyplot as plt\n",
|
| 70 |
+
"%matplotlib inline\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"from matplotlib import cm"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "markdown",
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"source": [
|
| 79 |
+
"## Loading data<a id=\"data-loading\"></a>\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"<div style=\"text-align: right\">Back to <a href=#contents>Contents</a></div>"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "markdown",
|
| 86 |
+
"metadata": {},
|
| 87 |
+
"source": [
|
| 88 |
+
"Let's download the dataset:"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"execution_count": 4,
|
| 94 |
+
"metadata": {},
|
| 95 |
+
"outputs": [
|
| 96 |
+
{
|
| 97 |
+
"name": "stderr",
|
| 98 |
+
"output_type": "stream",
|
| 99 |
+
"text": [
|
| 100 |
+
"Downloading 20news dataset. This may take a few minutes.\n",
|
| 101 |
+
"Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)\n"
|
| 102 |
+
]
|
| 103 |
+
}
|
| 104 |
+
],
|
| 105 |
+
"source": [
|
| 106 |
+
"train_20 = fetch_20newsgroups(\n",
|
| 107 |
+
" subset='train',\n",
|
| 108 |
+
" remove=('headers', 'footers', 'quotes'),\n",
|
| 109 |
+
")\n",
|
| 110 |
+
"test_20 = fetch_20newsgroups(\n",
|
| 111 |
+
" subset='test',\n",
|
| 112 |
+
" remove=('headers', 'footers', 'quotes'),\n",
|
| 113 |
+
")"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": 5,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [
|
| 121 |
+
{
|
| 122 |
+
"name": "stdout",
|
| 123 |
+
"output_type": "stream",
|
| 124 |
+
"text": [
|
| 125 |
+
"11314 data\n",
|
| 126 |
+
"11314 filenames\n",
|
| 127 |
+
"11314 target\n"
|
| 128 |
+
]
|
| 129 |
+
}
|
| 130 |
+
],
|
| 131 |
+
"source": [
|
| 132 |
+
"train_20.pop('DESCR')\n",
|
| 133 |
+
"labels = train_20.pop('target_names')\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"for k in train_20.keys():\n",
|
| 136 |
+
" print(len(train_20[k]), k)"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "code",
|
| 141 |
+
"execution_count": 6,
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"outputs": [
|
| 144 |
+
{
|
| 145 |
+
"name": "stdout",
|
| 146 |
+
"output_type": "stream",
|
| 147 |
+
"text": [
|
| 148 |
+
"7532 data\n",
|
| 149 |
+
"7532 filenames\n",
|
| 150 |
+
"7532 target\n"
|
| 151 |
+
]
|
| 152 |
+
}
|
| 153 |
+
],
|
| 154 |
+
"source": [
|
| 155 |
+
"test_20.pop('DESCR')\n",
|
| 156 |
+
"labels_test = test_20.pop('target_names')\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"for k in test_20.keys():\n",
|
| 159 |
+
" print(len(test_20[k]), k)"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "markdown",
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"source": [
|
| 166 |
+
"## Preparing data (lemmatization, Vowpal Wabbit & TopicNet's format)<a id=\"data-preparation\"></a>\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"<div style=\"text-align: right\">Back to <a href=#contents>Contents</a></div>"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "markdown",
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"source": [
|
| 175 |
+
"Wrapping all in .csv files:"
|
| 176 |
+
]
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"cell_type": "code",
|
| 180 |
+
"execution_count": 7,
|
| 181 |
+
"metadata": {},
|
| 182 |
+
"outputs": [],
|
| 183 |
+
"source": [
|
| 184 |
+
"train_pd = pd.DataFrame(train_20).rename(columns = {'data':'raw_text'},)\n",
|
| 185 |
+
"# train_pd['raw_text'] = train_pd['raw_text'].apply(lambda x: x.decode('windows-1252'))\n",
|
| 186 |
+
"train_pd['id'] = train_pd.filenames.apply( lambda x: '.'.join(x.split('/')[-2:]).replace('.','_'))\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"test_pd = pd.DataFrame(test_20).rename(columns = {'data':'raw_text'})\n",
|
| 189 |
+
"# test_pd['raw_text'] = test_pd['raw_text'].apply(lambda x: x.decode('windows-1252'))\n",
|
| 190 |
+
"test_pd['id'] = test_pd.filenames.apply( lambda x: '.'.join(x.split('/')[-2:]))"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "markdown",
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"source": [
|
| 197 |
+
"Better to exclude these documents (one may look here [20-newsgroups-secrets](https://github.com/Alvant/20-newsgroups-secrets) for more details)."
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"cell_type": "code",
|
| 202 |
+
"execution_count": 36,
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [],
|
| 205 |
+
"source": [
|
| 206 |
+
"bad_names = [9976, 9977, 9978, 9979, 9980, 9981, 9982, 9983, 9984, 9985, 9986, 9987, 9988, 9990]\n",
|
| 207 |
+
"bad_names = [f\"comp_os_ms-windows_misc_{i}\" for i in bad_names]\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"bad_indices = train_pd.query(\"id in @bad_names\").index"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "markdown",
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"source": [
|
| 216 |
+
"Below we define some functions for text preprocessing."
|
| 217 |
+
]
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"cell_type": "code",
|
| 221 |
+
"execution_count": 24,
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"def nltk2wn_tag(nltk_tag):\n",
|
| 226 |
+
" if nltk_tag.startswith('J'):\n",
|
| 227 |
+
" return wordnet.ADJ\n",
|
| 228 |
+
" elif nltk_tag.startswith('V'):\n",
|
| 229 |
+
" return wordnet.VERB\n",
|
| 230 |
+
" elif nltk_tag.startswith('N'):\n",
|
| 231 |
+
" return wordnet.NOUN\n",
|
| 232 |
+
" elif nltk_tag.startswith('R'):\n",
|
| 233 |
+
" return wordnet.ADV\n",
|
| 234 |
+
" else: \n",
|
| 235 |
+
" return ''"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"cell_type": "code",
|
| 240 |
+
"execution_count": null,
|
| 241 |
+
"metadata": {},
|
| 242 |
+
"outputs": [],
|
| 243 |
+
"source": [
|
| 244 |
+
"pattern = re.compile('\\S*@\\S*\\s?')"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"execution_count": 26,
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": [
|
| 253 |
+
"def vowpalize_sequence(sequence):\n",
|
| 254 |
+
" word_2_frequency = Counter(sequence)\n",
|
| 255 |
+
" \n",
|
| 256 |
+
" del word_2_frequency['']\n",
|
| 257 |
+
" \n",
|
| 258 |
+
" vw_string = ''\n",
|
| 259 |
+
" \n",
|
| 260 |
+
" for word in word_2_frequency:\n",
|
| 261 |
+
" vw_string += word + \":\" + str(word_2_frequency[word]) + ' '\n",
|
| 262 |
+
" \n",
|
| 263 |
+
" return vw_string\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"def do_vw_for_me_please(dataframe):\n",
|
| 266 |
+
" bad_entries = []\n",
|
| 267 |
+
" tokenized_text = []\n",
|
| 268 |
+
" \n",
|
| 269 |
+
" for indx, text in enumerate(dataframe['raw_text'].values):\n",
|
| 270 |
+
" try:\n",
|
| 271 |
+
" text = str(pattern.sub('', text))\n",
|
| 272 |
+
" except TypeError:\n",
|
| 273 |
+
" text=''\n",
|
| 274 |
+
" \n",
|
| 275 |
+
" tokens = [tok for tok in nltk.wordpunct_tokenize(text.lower()) if len(tok) > 1]\n",
|
| 276 |
+
" tokenized_text.append(nltk.pos_tag(tokens))\n",
|
| 277 |
+
" \n",
|
| 278 |
+
" dataframe['tokenized'] = tokenized_text\n",
|
| 279 |
+
"\n",
|
| 280 |
+
" stop = set(stopwords.words('english'))\n",
|
| 281 |
+
"\n",
|
| 282 |
+
" lemmatized_text = []\n",
|
| 283 |
+
" wnl = WordNetLemmatizer()\n",
|
| 284 |
+
" \n",
|
| 285 |
+
" for text in dataframe['tokenized'].values:\n",
|
| 286 |
+
" lemmatized = [wnl.lemmatize(word, nltk2wn_tag(pos))\n",
|
| 287 |
+
" if nltk2wn_tag(pos) != ''\n",
|
| 288 |
+
" else wnl.lemmatize(word)\n",
|
| 289 |
+
" for word, pos in text ]\n",
|
| 290 |
+
" lemmatized = [word for word in lemmatized \n",
|
| 291 |
+
" if word not in stop and word.isalpha()]\n",
|
| 292 |
+
" lemmatized_text.append(lemmatized)\n",
|
| 293 |
+
" \n",
|
| 294 |
+
" dataframe['lemmatized'] = lemmatized_text\n",
|
| 295 |
+
"\n",
|
| 296 |
+
" bigram_measures = BigramAssocMeasures()\n",
|
| 297 |
+
" finder = BigramCollocationFinder.from_documents(dataframe['lemmatized'])\n",
|
| 298 |
+
" finder.apply_freq_filter(5)\n",
|
| 299 |
+
" set_dict = set(finder.nbest(bigram_measures.pmi,32100)[100:])\n",
|
| 300 |
+
" documents = dataframe['lemmatized']\n",
|
| 301 |
+
" bigrams = []\n",
|
| 302 |
+
"\n",
|
| 303 |
+
" for doc in documents:\n",
|
| 304 |
+
" entry = ['_'.join([word_first, word_second])\n",
|
| 305 |
+
" for word_first, word_second in zip(doc[:-1],doc[1:])\n",
|
| 306 |
+
" if (word_first, word_second) in set_dict]\n",
|
| 307 |
+
" bigrams.append(entry)\n",
|
| 308 |
+
"\n",
|
| 309 |
+
" dataframe['bigram'] = bigrams\n",
|
| 310 |
+
" \n",
|
| 311 |
+
" vw_text = []\n",
|
| 312 |
+
"\n",
|
| 313 |
+
" for index, data in dataframe.iterrows():\n",
|
| 314 |
+
" vw_string = '' \n",
|
| 315 |
+
" doc_id = data.id\n",
|
| 316 |
+
" lemmatized = '@lemmatized ' + vowpalize_sequence(data.lemmatized)\n",
|
| 317 |
+
" bigram = '@bigram ' + vowpalize_sequence(data.bigram)\n",
|
| 318 |
+
" vw_string = ' |'.join([doc_id, lemmatized, bigram])\n",
|
| 319 |
+
" vw_text.append(vw_string)\n",
|
| 320 |
+
"\n",
|
| 321 |
+
" dataframe['vw_text'] = vw_text\n",
|
| 322 |
+
"\n",
|
| 323 |
+
" print('num bad entries ', len(bad_entries))\n",
|
| 324 |
+
" print(bad_entries)\n",
|
| 325 |
+
"\n",
|
| 326 |
+
" return dataframe"
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"cell_type": "markdown",
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"source": [
|
| 333 |
+
"And here are the final datasets!\n",
|
| 334 |
+
"Each row represents a document.\n",
|
| 335 |
+
"Columns `id`, `raw_text` and `vw_text` are required (look at this [toy dataset](https://github.com/machine-intelligence-laboratory/TopicNet/blob/master/topicnet/tests/test_data/test_dataset.csv), for example)."
|
| 336 |
+
]
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"cell_type": "code",
|
| 340 |
+
"execution_count": 41,
|
| 341 |
+
"metadata": {},
|
| 342 |
+
"outputs": [
|
| 343 |
+
{
|
| 344 |
+
"name": "stdout",
|
| 345 |
+
"output_type": "stream",
|
| 346 |
+
"text": [
|
| 347 |
+
"num bad entries 0\n",
|
| 348 |
+
"[]\n"
|
| 349 |
+
]
|
| 350 |
+
},
|
| 351 |
+
{
|
| 352 |
+
"data": {
|
| 353 |
+
"text/html": [
|
| 354 |
+
"<div>\n",
|
| 355 |
+
"<style scoped>\n",
|
| 356 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 357 |
+
" vertical-align: middle;\n",
|
| 358 |
+
" }\n",
|
| 359 |
+
"\n",
|
| 360 |
+
" .dataframe tbody tr th {\n",
|
| 361 |
+
" vertical-align: top;\n",
|
| 362 |
+
" }\n",
|
| 363 |
+
"\n",
|
| 364 |
+
" .dataframe thead th {\n",
|
| 365 |
+
" text-align: right;\n",
|
| 366 |
+
" }\n",
|
| 367 |
+
"</style>\n",
|
| 368 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 369 |
+
" <thead>\n",
|
| 370 |
+
" <tr style=\"text-align: right;\">\n",
|
| 371 |
+
" <th></th>\n",
|
| 372 |
+
" <th>raw_text</th>\n",
|
| 373 |
+
" <th>filenames</th>\n",
|
| 374 |
+
" <th>target</th>\n",
|
| 375 |
+
" <th>id</th>\n",
|
| 376 |
+
" <th>tokenized</th>\n",
|
| 377 |
+
" <th>lemmatized</th>\n",
|
| 378 |
+
" <th>bigram</th>\n",
|
| 379 |
+
" <th>vw_text</th>\n",
|
| 380 |
+
" </tr>\n",
|
| 381 |
+
" </thead>\n",
|
| 382 |
+
" <tbody>\n",
|
| 383 |
+
" <tr>\n",
|
| 384 |
+
" <th>0</th>\n",
|
| 385 |
+
" <td>I was wondering if anyone out there could enli...</td>\n",
|
| 386 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 387 |
+
" <td>7</td>\n",
|
| 388 |
+
" <td>rec_autos_102994</td>\n",
|
| 389 |
+
" <td>[(was, VBD), (wondering, VBG), (if, IN), (anyo...</td>\n",
|
| 390 |
+
" <td>[wonder, anyone, could, enlighten, car, saw, d...</td>\n",
|
| 391 |
+
" <td>[wonder_anyone, anyone_could, sport_car, car_l...</td>\n",
|
| 392 |
+
" <td>rec_autos_102994 |@lemmatized wonder:1 anyone:...</td>\n",
|
| 393 |
+
" </tr>\n",
|
| 394 |
+
" <tr>\n",
|
| 395 |
+
" <th>1</th>\n",
|
| 396 |
+
" <td>A fair number of brave souls who upgraded thei...</td>\n",
|
| 397 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 398 |
+
" <td>4</td>\n",
|
| 399 |
+
" <td>comp_sys_mac_hardware_51861</td>\n",
|
| 400 |
+
" <td>[(fair, JJ), (number, NN), (of, IN), (brave, J...</td>\n",
|
| 401 |
+
" <td>[fair, number, brave, soul, upgrade, si, clock...</td>\n",
|
| 402 |
+
" <td>[clock_oscillator, please_send, top_speed, hea...</td>\n",
|
| 403 |
+
" <td>comp_sys_mac_hardware_51861 |@lemmatized fair:...</td>\n",
|
| 404 |
+
" </tr>\n",
|
| 405 |
+
" <tr>\n",
|
| 406 |
+
" <th>2</th>\n",
|
| 407 |
+
" <td>well folks, my mac plus finally gave up the gh...</td>\n",
|
| 408 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 409 |
+
" <td>4</td>\n",
|
| 410 |
+
" <td>comp_sys_mac_hardware_51879</td>\n",
|
| 411 |
+
" <td>[(well, RB), (folks, NNS), (my, PRP$), (mac, J...</td>\n",
|
| 412 |
+
" <td>[well, folk, mac, plus, finally, give, ghost, ...</td>\n",
|
| 413 |
+
" <td>[mac_plus, life_way, way_back, market_new, new...</td>\n",
|
| 414 |
+
" <td>comp_sys_mac_hardware_51879 |@lemmatized well:...</td>\n",
|
| 415 |
+
" </tr>\n",
|
| 416 |
+
" <tr>\n",
|
| 417 |
+
" <th>3</th>\n",
|
| 418 |
+
" <td>\\nDo you have Weitek's address/phone number? ...</td>\n",
|
| 419 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 420 |
+
" <td>1</td>\n",
|
| 421 |
+
" <td>comp_graphics_38242</td>\n",
|
| 422 |
+
" <td>[(do, VBP), (you, PRP), (have, VB), (weitek, V...</td>\n",
|
| 423 |
+
" <td>[weitek, address, phone, number, like, get, in...</td>\n",
|
| 424 |
+
" <td>[address_phone, phone_number, number_like, lik...</td>\n",
|
| 425 |
+
" <td>comp_graphics_38242 |@lemmatized weitek:1 addr...</td>\n",
|
| 426 |
+
" </tr>\n",
|
| 427 |
+
" <tr>\n",
|
| 428 |
+
" <th>4</th>\n",
|
| 429 |
+
" <td>From article <[email protected]>, by to...</td>\n",
|
| 430 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 431 |
+
" <td>14</td>\n",
|
| 432 |
+
" <td>sci_space_60880</td>\n",
|
| 433 |
+
" <td>[(from, IN), (article, NN), (by, IN), (tom, NN...</td>\n",
|
| 434 |
+
" <td>[article, tom, baker, understanding, expected,...</td>\n",
|
| 435 |
+
" <td>[system_software, thing_check, introduce_new, ...</td>\n",
|
| 436 |
+
" <td>sci_space_60880 |@lemmatized article:1 tom:1 b...</td>\n",
|
| 437 |
+
" </tr>\n",
|
| 438 |
+
" </tbody>\n",
|
| 439 |
+
"</table>\n",
|
| 440 |
+
"</div>"
|
| 441 |
+
],
|
| 442 |
+
"text/plain": [
|
| 443 |
+
" raw_text \\\n",
|
| 444 |
+
"0 I was wondering if anyone out there could enli... \n",
|
| 445 |
+
"1 A fair number of brave souls who upgraded thei... \n",
|
| 446 |
+
"2 well folks, my mac plus finally gave up the gh... \n",
|
| 447 |
+
"3 \\nDo you have Weitek's address/phone number? ... \n",
|
| 448 |
+
"4 From article <[email protected]>, by to... \n",
|
| 449 |
+
"\n",
|
| 450 |
+
" filenames target \\\n",
|
| 451 |
+
"0 /home/bulatov/scikit_learn_data/20news_home/20... 7 \n",
|
| 452 |
+
"1 /home/bulatov/scikit_learn_data/20news_home/20... 4 \n",
|
| 453 |
+
"2 /home/bulatov/scikit_learn_data/20news_home/20... 4 \n",
|
| 454 |
+
"3 /home/bulatov/scikit_learn_data/20news_home/20... 1 \n",
|
| 455 |
+
"4 /home/bulatov/scikit_learn_data/20news_home/20... 14 \n",
|
| 456 |
+
"\n",
|
| 457 |
+
" id \\\n",
|
| 458 |
+
"0 rec_autos_102994 \n",
|
| 459 |
+
"1 comp_sys_mac_hardware_51861 \n",
|
| 460 |
+
"2 comp_sys_mac_hardware_51879 \n",
|
| 461 |
+
"3 comp_graphics_38242 \n",
|
| 462 |
+
"4 sci_space_60880 \n",
|
| 463 |
+
"\n",
|
| 464 |
+
" tokenized \\\n",
|
| 465 |
+
"0 [(was, VBD), (wondering, VBG), (if, IN), (anyo... \n",
|
| 466 |
+
"1 [(fair, JJ), (number, NN), (of, IN), (brave, J... \n",
|
| 467 |
+
"2 [(well, RB), (folks, NNS), (my, PRP$), (mac, J... \n",
|
| 468 |
+
"3 [(do, VBP), (you, PRP), (have, VB), (weitek, V... \n",
|
| 469 |
+
"4 [(from, IN), (article, NN), (by, IN), (tom, NN... \n",
|
| 470 |
+
"\n",
|
| 471 |
+
" lemmatized \\\n",
|
| 472 |
+
"0 [wonder, anyone, could, enlighten, car, saw, d... \n",
|
| 473 |
+
"1 [fair, number, brave, soul, upgrade, si, clock... \n",
|
| 474 |
+
"2 [well, folk, mac, plus, finally, give, ghost, ... \n",
|
| 475 |
+
"3 [weitek, address, phone, number, like, get, in... \n",
|
| 476 |
+
"4 [article, tom, baker, understanding, expected,... \n",
|
| 477 |
+
"\n",
|
| 478 |
+
" bigram \\\n",
|
| 479 |
+
"0 [wonder_anyone, anyone_could, sport_car, car_l... \n",
|
| 480 |
+
"1 [clock_oscillator, please_send, top_speed, hea... \n",
|
| 481 |
+
"2 [mac_plus, life_way, way_back, market_new, new... \n",
|
| 482 |
+
"3 [address_phone, phone_number, number_like, lik... \n",
|
| 483 |
+
"4 [system_software, thing_check, introduce_new, ... \n",
|
| 484 |
+
"\n",
|
| 485 |
+
" vw_text \n",
|
| 486 |
+
"0 rec_autos_102994 |@lemmatized wonder:1 anyone:... \n",
|
| 487 |
+
"1 comp_sys_mac_hardware_51861 |@lemmatized fair:... \n",
|
| 488 |
+
"2 comp_sys_mac_hardware_51879 |@lemmatized well:... \n",
|
| 489 |
+
"3 comp_graphics_38242 |@lemmatized weitek:1 addr... \n",
|
| 490 |
+
"4 sci_space_60880 |@lemmatized article:1 tom:1 b... "
|
| 491 |
+
]
|
| 492 |
+
},
|
| 493 |
+
"metadata": {},
|
| 494 |
+
"output_type": "display_data"
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"name": "stdout",
|
| 498 |
+
"output_type": "stream",
|
| 499 |
+
"text": [
|
| 500 |
+
"num bad entries 0\n",
|
| 501 |
+
"[]\n"
|
| 502 |
+
]
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"data": {
|
| 506 |
+
"text/html": [
|
| 507 |
+
"<div>\n",
|
| 508 |
+
"<style scoped>\n",
|
| 509 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 510 |
+
" vertical-align: middle;\n",
|
| 511 |
+
" }\n",
|
| 512 |
+
"\n",
|
| 513 |
+
" .dataframe tbody tr th {\n",
|
| 514 |
+
" vertical-align: top;\n",
|
| 515 |
+
" }\n",
|
| 516 |
+
"\n",
|
| 517 |
+
" .dataframe thead th {\n",
|
| 518 |
+
" text-align: right;\n",
|
| 519 |
+
" }\n",
|
| 520 |
+
"</style>\n",
|
| 521 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 522 |
+
" <thead>\n",
|
| 523 |
+
" <tr style=\"text-align: right;\">\n",
|
| 524 |
+
" <th></th>\n",
|
| 525 |
+
" <th>raw_text</th>\n",
|
| 526 |
+
" <th>filenames</th>\n",
|
| 527 |
+
" <th>target</th>\n",
|
| 528 |
+
" <th>id</th>\n",
|
| 529 |
+
" <th>tokenized</th>\n",
|
| 530 |
+
" <th>lemmatized</th>\n",
|
| 531 |
+
" <th>bigram</th>\n",
|
| 532 |
+
" <th>vw_text</th>\n",
|
| 533 |
+
" </tr>\n",
|
| 534 |
+
" </thead>\n",
|
| 535 |
+
" <tbody>\n",
|
| 536 |
+
" <tr>\n",
|
| 537 |
+
" <th>0</th>\n",
|
| 538 |
+
" <td>I am a little confused on all of the models of...</td>\n",
|
| 539 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 540 |
+
" <td>7</td>\n",
|
| 541 |
+
" <td>rec.autos.103343</td>\n",
|
| 542 |
+
" <td>[(am, VBP), (little, JJ), (confused, VBN), (on...</td>\n",
|
| 543 |
+
" <td>[little, confuse, model, bonnevilles, hear, le...</td>\n",
|
| 544 |
+
" <td>[could_someone, someone_tell, tell_difference,...</td>\n",
|
| 545 |
+
" <td>rec.autos.103343 |@lemmatized little:1 confuse...</td>\n",
|
| 546 |
+
" </tr>\n",
|
| 547 |
+
" <tr>\n",
|
| 548 |
+
" <th>1</th>\n",
|
| 549 |
+
" <td>I'm not familiar at all with the format of the...</td>\n",
|
| 550 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 551 |
+
" <td>5</td>\n",
|
| 552 |
+
" <td>comp.windows.x.67445</td>\n",
|
| 553 |
+
" <td>[(not, RB), (familiar, JJ), (at, IN), (all, DT...</td>\n",
|
| 554 |
+
" <td>[familiar, format, face, thingies, see, folk, ...</td>\n",
|
| 555 |
+
" <td>[get_see, make_one, one_get, seem_find, could_...</td>\n",
|
| 556 |
+
" <td>comp.windows.x.67445 |@lemmatized familiar:1 f...</td>\n",
|
| 557 |
+
" </tr>\n",
|
| 558 |
+
" <tr>\n",
|
| 559 |
+
" <th>2</th>\n",
|
| 560 |
+
" <td>\\nIn a word, yes.\\n</td>\n",
|
| 561 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 562 |
+
" <td>0</td>\n",
|
| 563 |
+
" <td>alt.atheism.53603</td>\n",
|
| 564 |
+
" <td>[(in, IN), (word, NN), (yes, NN)]</td>\n",
|
| 565 |
+
" <td>[word, yes]</td>\n",
|
| 566 |
+
" <td>[]</td>\n",
|
| 567 |
+
" <td>alt.atheism.53603 |@lemmatized word:1 yes:1 |...</td>\n",
|
| 568 |
+
" </tr>\n",
|
| 569 |
+
" <tr>\n",
|
| 570 |
+
" <th>3</th>\n",
|
| 571 |
+
" <td>\\nThey were attacking the Iraqis to drive them...</td>\n",
|
| 572 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 573 |
+
" <td>17</td>\n",
|
| 574 |
+
" <td>talk.politics.mideast.77355</td>\n",
|
| 575 |
+
" <td>[(they, PRP), (were, VBD), (attacking, VBG), (...</td>\n",
|
| 576 |
+
" <td>[attack, iraqi, drive, kuwait, country, whose,...</td>\n",
|
| 577 |
+
" <td>[think_u, saudi_arabia, much_anything, saudi_a...</td>\n",
|
| 578 |
+
" <td>talk.politics.mideast.77355 |@lemmatized attac...</td>\n",
|
| 579 |
+
" </tr>\n",
|
| 580 |
+
" <tr>\n",
|
| 581 |
+
" <th>4</th>\n",
|
| 582 |
+
" <td>\\nI've just spent two solid months arguing tha...</td>\n",
|
| 583 |
+
" <td>/home/bulatov/scikit_learn_data/20news_home/20...</td>\n",
|
| 584 |
+
" <td>19</td>\n",
|
| 585 |
+
" <td>talk.religion.misc.84194</td>\n",
|
| 586 |
+
" <td>[(ve, NN), (just, RB), (spent, VBN), (two, CD)...</td>\n",
|
| 587 |
+
" <td>[spend, two, solid, month, argue, thing, objec...</td>\n",
|
| 588 |
+
" <td>[moral_system]</td>\n",
|
| 589 |
+
" <td>talk.religion.misc.84194 |@lemmatized spend:1 ...</td>\n",
|
| 590 |
+
" </tr>\n",
|
| 591 |
+
" </tbody>\n",
|
| 592 |
+
"</table>\n",
|
| 593 |
+
"</div>"
|
| 594 |
+
],
|
| 595 |
+
"text/plain": [
|
| 596 |
+
" raw_text \\\n",
|
| 597 |
+
"0 I am a little confused on all of the models of... \n",
|
| 598 |
+
"1 I'm not familiar at all with the format of the... \n",
|
| 599 |
+
"2 \\nIn a word, yes.\\n \n",
|
| 600 |
+
"3 \\nThey were attacking the Iraqis to drive them... \n",
|
| 601 |
+
"4 \\nI've just spent two solid months arguing tha... \n",
|
| 602 |
+
"\n",
|
| 603 |
+
" filenames target \\\n",
|
| 604 |
+
"0 /home/bulatov/scikit_learn_data/20news_home/20... 7 \n",
|
| 605 |
+
"1 /home/bulatov/scikit_learn_data/20news_home/20... 5 \n",
|
| 606 |
+
"2 /home/bulatov/scikit_learn_data/20news_home/20... 0 \n",
|
| 607 |
+
"3 /home/bulatov/scikit_learn_data/20news_home/20... 17 \n",
|
| 608 |
+
"4 /home/bulatov/scikit_learn_data/20news_home/20... 19 \n",
|
| 609 |
+
"\n",
|
| 610 |
+
" id \\\n",
|
| 611 |
+
"0 rec.autos.103343 \n",
|
| 612 |
+
"1 comp.windows.x.67445 \n",
|
| 613 |
+
"2 alt.atheism.53603 \n",
|
| 614 |
+
"3 talk.politics.mideast.77355 \n",
|
| 615 |
+
"4 talk.religion.misc.84194 \n",
|
| 616 |
+
"\n",
|
| 617 |
+
" tokenized \\\n",
|
| 618 |
+
"0 [(am, VBP), (little, JJ), (confused, VBN), (on... \n",
|
| 619 |
+
"1 [(not, RB), (familiar, JJ), (at, IN), (all, DT... \n",
|
| 620 |
+
"2 [(in, IN), (word, NN), (yes, NN)] \n",
|
| 621 |
+
"3 [(they, PRP), (were, VBD), (attacking, VBG), (... \n",
|
| 622 |
+
"4 [(ve, NN), (just, RB), (spent, VBN), (two, CD)... \n",
|
| 623 |
+
"\n",
|
| 624 |
+
" lemmatized \\\n",
|
| 625 |
+
"0 [little, confuse, model, bonnevilles, hear, le... \n",
|
| 626 |
+
"1 [familiar, format, face, thingies, see, folk, ... \n",
|
| 627 |
+
"2 [word, yes] \n",
|
| 628 |
+
"3 [attack, iraqi, drive, kuwait, country, whose,... \n",
|
| 629 |
+
"4 [spend, two, solid, month, argue, thing, objec... \n",
|
| 630 |
+
"\n",
|
| 631 |
+
" bigram \\\n",
|
| 632 |
+
"0 [could_someone, someone_tell, tell_difference,... \n",
|
| 633 |
+
"1 [get_see, make_one, one_get, seem_find, could_... \n",
|
| 634 |
+
"2 [] \n",
|
| 635 |
+
"3 [think_u, saudi_arabia, much_anything, saudi_a... \n",
|
| 636 |
+
"4 [moral_system] \n",
|
| 637 |
+
"\n",
|
| 638 |
+
" vw_text \n",
|
| 639 |
+
"0 rec.autos.103343 |@lemmatized little:1 confuse... \n",
|
| 640 |
+
"1 comp.windows.x.67445 |@lemmatized familiar:1 f... \n",
|
| 641 |
+
"2 alt.atheism.53603 |@lemmatized word:1 yes:1 |... \n",
|
| 642 |
+
"3 talk.politics.mideast.77355 |@lemmatized attac... \n",
|
| 643 |
+
"4 talk.religion.misc.84194 |@lemmatized spend:1 ... "
|
| 644 |
+
]
|
| 645 |
+
},
|
| 646 |
+
"metadata": {},
|
| 647 |
+
"output_type": "display_data"
|
| 648 |
+
}
|
| 649 |
+
],
|
| 650 |
+
"source": [
|
| 651 |
+
"train_pd = do_vw_for_me_please(train_pd)\n",
|
| 652 |
+
"display(train_pd.head())\n",
|
| 653 |
+
"\n",
|
| 654 |
+
"test_pd = do_vw_for_me_please(test_pd)\n",
|
| 655 |
+
"display(test_pd.head())"
|
| 656 |
+
]
|
| 657 |
+
},
|
| 658 |
+
{
|
| 659 |
+
"cell_type": "markdown",
|
| 660 |
+
"metadata": {},
|
| 661 |
+
"source": [
|
| 662 |
+
"Saving to disk (TopicNet's [Dataset](https://github.com/machine-intelligence-laboratory/TopicNet/blob/master/topicnet/cooking_machine/dataset.py) can be constructed using saved .csv file with text data)."
|
| 663 |
+
]
|
| 664 |
+
},
|
| 665 |
+
{
|
| 666 |
+
"cell_type": "code",
|
| 667 |
+
"execution_count": 44,
|
| 668 |
+
"metadata": {},
|
| 669 |
+
"outputs": [],
|
| 670 |
+
"source": [
|
| 671 |
+
"! mkdir 20_News_dataset\n",
|
| 672 |
+
"\n",
|
| 673 |
+
"train_pd.drop(bad_indices).to_csv('/data/datasets/20_News_dataset/train_preprocessed.csv')\n",
|
| 674 |
+
"test_pd.to_csv('/data/datasets/20_News_dataset/test_preprocessed.csv')"
|
| 675 |
+
]
|
| 676 |
+
}
|
| 677 |
+
],
|
| 678 |
+
"metadata": {
|
| 679 |
+
"kernelspec": {
|
| 680 |
+
"display_name": "Python 3",
|
| 681 |
+
"language": "python",
|
| 682 |
+
"name": "python3"
|
| 683 |
+
},
|
| 684 |
+
"language_info": {
|
| 685 |
+
"codemirror_mode": {
|
| 686 |
+
"name": "ipython",
|
| 687 |
+
"version": 3
|
| 688 |
+
},
|
| 689 |
+
"file_extension": ".py",
|
| 690 |
+
"mimetype": "text/x-python",
|
| 691 |
+
"name": "python",
|
| 692 |
+
"nbconvert_exporter": "python",
|
| 693 |
+
"pygments_lexer": "ipython3",
|
| 694 |
+
"version": "3.6.9"
|
| 695 |
+
}
|
| 696 |
+
},
|
| 697 |
+
"nbformat": 4,
|
| 698 |
+
"nbformat_minor": 2
|
| 699 |
+
}
|