update README
Browse files
README.md
CHANGED
|
@@ -14,15 +14,14 @@ size_categories:
|
|
| 14 |
Datasets accompanying the paper "Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain".
|
| 15 |
|
| 16 |
## Quick Start
|
|
|
|
|
|
|
| 17 |
```python
|
| 18 |
from datasets import load_dataset
|
| 19 |
|
| 20 |
dataset = load_dataset('Salesforce/cloudops_tsf', 'azure_vm_traces_2017')
|
| 21 |
-
|
| 22 |
|
| 23 |
-
## Available Datasets
|
| 24 |
-
### azure_vm_traces_2017
|
| 25 |
-
```python
|
| 26 |
DatasetDict({
|
| 27 |
train_test: Dataset({
|
| 28 |
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
|
|
@@ -37,6 +36,9 @@ DatasetDict({
|
|
| 37 |
|
| 38 |
### borg_cluster_data_2011
|
| 39 |
```python
|
|
|
|
|
|
|
|
|
|
| 40 |
DatasetDict({
|
| 41 |
train_test: Dataset({
|
| 42 |
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
|
@@ -51,6 +53,9 @@ DatasetDict({
|
|
| 51 |
|
| 52 |
### alibaba_cluster_trace_2018
|
| 53 |
```python
|
|
|
|
|
|
|
|
|
|
| 54 |
DatasetDict({
|
| 55 |
train_test: Dataset({
|
| 56 |
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
|
@@ -71,7 +76,7 @@ config = load_dataset_builder('Salesforce/cloudops_tsf', 'azure_vm_traces_2017')
|
|
| 71 |
print(config)
|
| 72 |
|
| 73 |
CloudOpsTSFConfig(
|
| 74 |
-
name='
|
| 75 |
version=1.0.0,
|
| 76 |
data_dir=None,
|
| 77 |
data_files=None,
|
|
@@ -79,23 +84,32 @@ CloudOpsTSFConfig(
|
|
| 79 |
prediction_length=48,
|
| 80 |
freq='5T',
|
| 81 |
stride=48,
|
| 82 |
-
univariate=
|
| 83 |
-
multivariate=
|
| 84 |
-
optional_fields=(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
rolling_evaluations=12,
|
| 86 |
-
test_split_date=Period('
|
| 87 |
_feat_static_cat_cardinalities={
|
| 88 |
'pretrain': (
|
| 89 |
-
('
|
| 90 |
-
('
|
|
|
|
|
|
|
|
|
|
| 91 |
'train_test': (
|
| 92 |
-
('
|
| 93 |
-
('
|
|
|
|
|
|
|
| 94 |
)
|
| 95 |
},
|
| 96 |
-
target_dim=
|
| 97 |
-
feat_static_real_dim=
|
| 98 |
-
past_feat_dynamic_real_dim=
|
| 99 |
)
|
| 100 |
```
|
| 101 |
```test_split_date``` is provided to achieve the same train-test split as given in the paper.
|
|
@@ -117,11 +131,11 @@ The datasets were processed from the following original sources. Please cite the
|
|
| 117 |
* https://github.com/alibaba/clusterdata
|
| 118 |
|
| 119 |
## Citation
|
| 120 |
-
|
| 121 |
@article{woo2023pushing,
|
| 122 |
title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
|
| 123 |
author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
|
| 124 |
journal={arXiv preprint arXiv:2310.05063},
|
| 125 |
year={2023}
|
| 126 |
}
|
| 127 |
-
|
|
|
|
| 14 |
Datasets accompanying the paper "Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain".
|
| 15 |
|
| 16 |
## Quick Start
|
| 17 |
+
|
| 18 |
+
### azure_vm_traces_2017
|
| 19 |
```python
|
| 20 |
from datasets import load_dataset
|
| 21 |
|
| 22 |
dataset = load_dataset('Salesforce/cloudops_tsf', 'azure_vm_traces_2017')
|
| 23 |
+
print(dataset)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
DatasetDict({
|
| 26 |
train_test: Dataset({
|
| 27 |
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
|
|
|
|
| 36 |
|
| 37 |
### borg_cluster_data_2011
|
| 38 |
```python
|
| 39 |
+
dataset = load_dataset('Salesforce/cloudops_tsf', 'borg_cluster_data_2011')
|
| 40 |
+
print(dataset)
|
| 41 |
+
|
| 42 |
DatasetDict({
|
| 43 |
train_test: Dataset({
|
| 44 |
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
|
|
|
| 53 |
|
| 54 |
### alibaba_cluster_trace_2018
|
| 55 |
```python
|
| 56 |
+
dataset = load_dataset('Salesforce/cloudops_tsf', 'alibaba_cluster_trace_2018')
|
| 57 |
+
print(dataset)
|
| 58 |
+
|
| 59 |
DatasetDict({
|
| 60 |
train_test: Dataset({
|
| 61 |
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
|
|
|
| 76 |
print(config)
|
| 77 |
|
| 78 |
CloudOpsTSFConfig(
|
| 79 |
+
name='azure_vm_traces_2017',
|
| 80 |
version=1.0.0,
|
| 81 |
data_dir=None,
|
| 82 |
data_files=None,
|
|
|
|
| 84 |
prediction_length=48,
|
| 85 |
freq='5T',
|
| 86 |
stride=48,
|
| 87 |
+
univariate=True,
|
| 88 |
+
multivariate=False,
|
| 89 |
+
optional_fields=(
|
| 90 |
+
'feat_static_cat',
|
| 91 |
+
'feat_static_real',
|
| 92 |
+
'past_feat_dynamic_real'
|
| 93 |
+
),
|
| 94 |
rolling_evaluations=12,
|
| 95 |
+
test_split_date=Period('2016-12-13 15:55', '5T'),
|
| 96 |
_feat_static_cat_cardinalities={
|
| 97 |
'pretrain': (
|
| 98 |
+
('vm_id', 177040),
|
| 99 |
+
('subscription_id', 5514),
|
| 100 |
+
('deployment_id', 15208),
|
| 101 |
+
('vm_category', 3)
|
| 102 |
+
),
|
| 103 |
'train_test': (
|
| 104 |
+
('vm_id', 17568),
|
| 105 |
+
('subscription_id', 2713),
|
| 106 |
+
('deployment_id', 3255),
|
| 107 |
+
('vm_category', 3)
|
| 108 |
)
|
| 109 |
},
|
| 110 |
+
target_dim=1,
|
| 111 |
+
feat_static_real_dim=3,
|
| 112 |
+
past_feat_dynamic_real_dim=2
|
| 113 |
)
|
| 114 |
```
|
| 115 |
```test_split_date``` is provided to achieve the same train-test split as given in the paper.
|
|
|
|
| 131 |
* https://github.com/alibaba/clusterdata
|
| 132 |
|
| 133 |
## Citation
|
| 134 |
+
<pre>
|
| 135 |
@article{woo2023pushing,
|
| 136 |
title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
|
| 137 |
author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
|
| 138 |
journal={arXiv preprint arXiv:2310.05063},
|
| 139 |
year={2023}
|
| 140 |
}
|
| 141 |
+
</pre>
|