update README
Browse files
README.md
CHANGED
|
@@ -5,4 +5,86 @@ task_categories:
|
|
| 5 |
pretty_name: cloud
|
| 6 |
size_categories:
|
| 7 |
- 100M<n<1B
|
| 8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
pretty_name: cloud
|
| 6 |
size_categories:
|
| 7 |
- 100M<n<1B
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
|
| 11 |
+
[Paper](https://arxiv.org/abs/2310.05063) | [Code](https://github.com/SalesforceAIResearch/pretrain-time-series-cloudops)
|
| 12 |
+
|
| 13 |
+
Datasets accompanying the paper "Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain".
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
from datasets import load_dataset
|
| 17 |
+
|
| 18 |
+
dataset = load_dataset('Salesforce/cloudops_tsf', 'azure_vm_traces_2017')
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
### azure_vm_traces_2017
|
| 22 |
+
```python
|
| 23 |
+
DatasetDict({
|
| 24 |
+
train_test: Dataset({
|
| 25 |
+
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
|
| 26 |
+
num_rows: 17568
|
| 27 |
+
})
|
| 28 |
+
pretrain: Dataset({
|
| 29 |
+
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
|
| 30 |
+
num_rows: 159472
|
| 31 |
+
})
|
| 32 |
+
})
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
### borg_cluster_data_2011
|
| 36 |
+
```python
|
| 37 |
+
DatasetDict({
|
| 38 |
+
train_test: Dataset({
|
| 39 |
+
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
| 40 |
+
num_rows: 11117
|
| 41 |
+
})
|
| 42 |
+
pretrain: Dataset({
|
| 43 |
+
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
| 44 |
+
num_rows: 143386
|
| 45 |
+
})
|
| 46 |
+
})
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
### alibaba_cluster_trace_2018
|
| 50 |
+
```python
|
| 51 |
+
DatasetDict({
|
| 52 |
+
train_test: Dataset({
|
| 53 |
+
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
| 54 |
+
num_rows: 6048
|
| 55 |
+
})
|
| 56 |
+
pretrain: Dataset({
|
| 57 |
+
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
|
| 58 |
+
num_rows: 58409
|
| 59 |
+
})
|
| 60 |
+
})
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## Acknowledgements
|
| 64 |
+
The datasets were processed from the following original sources. Please cite the original sources if you use the datasets.
|
| 65 |
+
* Azure VM Traces 2017
|
| 66 |
+
* Bianchini. Resource central: Understanding and predicting workloads for improved resource
|
| 67 |
+
management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Systems
|
| 68 |
+
Principles, pp. 153–167, 2017.
|
| 69 |
+
* https://github.com/Azure/AzurePublicDataset
|
| 70 |
+
|
| 71 |
+
* Borg Cluster Data 2011
|
| 72 |
+
* John Wilkes. More Google cluster data. Google research blog, November 2011. Posted at http:
|
| 73 |
+
//googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.
|
| 74 |
+
* https://github.com/google/cluster-data
|
| 75 |
+
|
| 76 |
+
* Alibaba Cluster Trace 2018
|
| 77 |
+
* Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. Who
|
| 78 |
+
limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces. In
|
| 79 |
+
Proceedings of the International Symposium on Quality of Service, pp. 1–10, 2019.
|
| 80 |
+
* https://github.com/alibaba/clusterdata
|
| 81 |
+
|
| 82 |
+
## Citation
|
| 83 |
+
```
|
| 84 |
+
@article{woo2023pushing,
|
| 85 |
+
title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
|
| 86 |
+
author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
|
| 87 |
+
journal={arXiv preprint arXiv:2310.05063},
|
| 88 |
+
year={2023}
|
| 89 |
+
}
|
| 90 |
+
```
|