Upload faq_system.py with huggingface_hub
Browse files- faq_system.py +147 -0
faq_system.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CodeBasics FAQ System
|
| 2 |
+
# Smart FAQ retrieval using TF-IDF and cosine similarity
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
class CodeBasicsFAQ:
|
| 10 |
+
def __init__(self, csv_path='codebasics_faqs.csv'):
|
| 11 |
+
"""Initialize FAQ system from CSV file"""
|
| 12 |
+
# Load FAQ data
|
| 13 |
+
encodings = ['utf-8', 'latin-1', 'iso-8859-1', 'cp1252']
|
| 14 |
+
df = None
|
| 15 |
+
|
| 16 |
+
for encoding in encodings:
|
| 17 |
+
try:
|
| 18 |
+
df = pd.read_csv(csv_path, encoding=encoding)
|
| 19 |
+
print(f"β
Loaded {len(df)} FAQs")
|
| 20 |
+
break
|
| 21 |
+
except:
|
| 22 |
+
continue
|
| 23 |
+
|
| 24 |
+
if df is None:
|
| 25 |
+
raise Exception("Could not load FAQ CSV")
|
| 26 |
+
|
| 27 |
+
self.questions = df['prompt'].tolist()
|
| 28 |
+
self.answers = df['response'].tolist()
|
| 29 |
+
|
| 30 |
+
# Create TF-IDF vectorizer
|
| 31 |
+
self.vectorizer = TfidfVectorizer(
|
| 32 |
+
lowercase=True,
|
| 33 |
+
stop_words='english',
|
| 34 |
+
ngram_range=(1, 2)
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Fit on all questions
|
| 38 |
+
self.question_vectors = self.vectorizer.fit_transform(self.questions)
|
| 39 |
+
print(f"β
FAQ System ready!")
|
| 40 |
+
|
| 41 |
+
def find_best_match(self, query, threshold=0.2):
|
| 42 |
+
"""Find best matching FAQ"""
|
| 43 |
+
query_vector = self.vectorizer.transform([query])
|
| 44 |
+
similarities = cosine_similarity(query_vector, self.question_vectors)[0]
|
| 45 |
+
|
| 46 |
+
best_idx = np.argmax(similarities)
|
| 47 |
+
best_score = similarities[best_idx]
|
| 48 |
+
|
| 49 |
+
if best_score >= threshold:
|
| 50 |
+
return {
|
| 51 |
+
'question': self.questions[best_idx],
|
| 52 |
+
'answer': self.answers[best_idx],
|
| 53 |
+
'confidence': best_score
|
| 54 |
+
}
|
| 55 |
+
return None
|
| 56 |
+
|
| 57 |
+
def answer(self, query):
|
| 58 |
+
"""Get answer for a query"""
|
| 59 |
+
result = self.find_best_match(query)
|
| 60 |
+
|
| 61 |
+
if result:
|
| 62 |
+
return {
|
| 63 |
+
'status': 'success',
|
| 64 |
+
'confidence': f"{result['confidence']*100:.1f}%",
|
| 65 |
+
'matched_question': result['question'],
|
| 66 |
+
'answer': result['answer']
|
| 67 |
+
}
|
| 68 |
+
else:
|
| 69 |
+
return {
|
| 70 |
+
'status': 'no_match',
|
| 71 |
+
'message': 'No matching FAQ found. Try rephrasing your question.'
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def search_keyword(self, keyword):
|
| 75 |
+
"""Search FAQs by keyword"""
|
| 76 |
+
keyword_lower = keyword.lower()
|
| 77 |
+
matches = []
|
| 78 |
+
|
| 79 |
+
for i, q in enumerate(self.questions):
|
| 80 |
+
if keyword_lower in q.lower() or keyword_lower in self.answers[i].lower():
|
| 81 |
+
matches.append({
|
| 82 |
+
'question': q,
|
| 83 |
+
'answer': self.answers[i]
|
| 84 |
+
})
|
| 85 |
+
|
| 86 |
+
return matches
|
| 87 |
+
|
| 88 |
+
def list_all_questions(self):
|
| 89 |
+
"""Return all FAQ questions"""
|
| 90 |
+
return self.questions
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# ============================================================================
|
| 94 |
+
# USAGE EXAMPLE
|
| 95 |
+
# ============================================================================
|
| 96 |
+
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
# Initialize
|
| 99 |
+
faq = CodeBasicsFAQ('codebasics_faqs.csv')
|
| 100 |
+
|
| 101 |
+
# Example questions
|
| 102 |
+
test_questions = [
|
| 103 |
+
"Can I take this bootcamp without programming experience?",
|
| 104 |
+
"Why should I trust Codebasics?",
|
| 105 |
+
"What are the prerequisites?",
|
| 106 |
+
"Do I need a laptop?"
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
print("\n" + "="*70)
|
| 110 |
+
print("TESTING FAQ SYSTEM")
|
| 111 |
+
print("="*70 + "\n")
|
| 112 |
+
|
| 113 |
+
for question in test_questions:
|
| 114 |
+
print(f"β {question}")
|
| 115 |
+
result = faq.answer(question)
|
| 116 |
+
|
| 117 |
+
if result['status'] == 'success':
|
| 118 |
+
print(f"β
Match: {result['confidence']}")
|
| 119 |
+
print(f"π Q: {result['matched_question']}")
|
| 120 |
+
print(f"π‘ A: {result['answer'][:100]}...\n")
|
| 121 |
+
else:
|
| 122 |
+
print(f"β {result['message']}\n")
|
| 123 |
+
|
| 124 |
+
# Interactive mode
|
| 125 |
+
print("\n" + "="*70)
|
| 126 |
+
print("INTERACTIVE MODE")
|
| 127 |
+
print("="*70)
|
| 128 |
+
print("Type 'quit' to exit\n")
|
| 129 |
+
|
| 130 |
+
while True:
|
| 131 |
+
user_q = input("β Your question: ").strip()
|
| 132 |
+
|
| 133 |
+
if user_q.lower() in ['quit', 'exit', 'q']:
|
| 134 |
+
print("π Goodbye!")
|
| 135 |
+
break
|
| 136 |
+
|
| 137 |
+
if not user_q:
|
| 138 |
+
continue
|
| 139 |
+
|
| 140 |
+
result = faq.answer(user_q)
|
| 141 |
+
|
| 142 |
+
if result['status'] == 'success':
|
| 143 |
+
print(f"\n[Confidence: {result['confidence']}]")
|
| 144 |
+
print(f"\nπ {result['matched_question']}")
|
| 145 |
+
print(f"\n⨠{result['answer']}\n")
|
| 146 |
+
else:
|
| 147 |
+
print(f"\nβ {result['message']}\n")
|