Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +305 -7
- img/Intel.png +3 -0
- img/RTX5090.png +3 -0
.gitattributes
CHANGED
|
@@ -51,3 +51,5 @@ Llama-3.1-8B-Instruct-Q4_K_S-3.60bpw.gguf filter=lfs diff=lfs merge=lfs -text
|
|
| 51 |
Llama-3.1-8B-Instruct-Q4_K_S-3.83bpw.gguf filter=lfs diff=lfs merge=lfs -text
|
| 52 |
Llama-3.1-8B-Instruct-Q4_K_S-4.21bpw.gguf filter=lfs diff=lfs merge=lfs -text
|
| 53 |
Llama-3.1-8B-Instruct-Q4_K_S-4.31bpw.gguf filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 51 |
Llama-3.1-8B-Instruct-Q4_K_S-3.83bpw.gguf filter=lfs diff=lfs merge=lfs -text
|
| 52 |
Llama-3.1-8B-Instruct-Q4_K_S-4.21bpw.gguf filter=lfs diff=lfs merge=lfs -text
|
| 53 |
Llama-3.1-8B-Instruct-Q4_K_S-4.31bpw.gguf filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
img/Intel.png filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
img/RTX5090.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,13 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
-
- de
|
| 5 |
-
- fr
|
| 6 |
-
- it
|
| 7 |
-
- pt
|
| 8 |
-
- hi
|
| 9 |
-
- es
|
| 10 |
-
- th
|
| 11 |
license: llama3.1
|
| 12 |
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
| 13 |
pipeline_tag: text-generation
|
|
@@ -19,3 +12,308 @@ tags:
|
|
| 19 |
- llama-3
|
| 20 |
- byteshape
|
| 21 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
license: llama3.1
|
| 5 |
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
| 6 |
pipeline_tag: text-generation
|
|
|
|
| 12 |
- llama-3
|
| 13 |
- byteshape
|
| 14 |
---
|
| 15 |
+
<style>
|
| 16 |
+
/* ByteShape Theme — Clean, compact, modern */
|
| 17 |
+
body, div, p, li, table, th, td {
|
| 18 |
+
font-family: "Lato", "Roboto", Arial, sans-serif;
|
| 19 |
+
line-height: 1.22;
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
/* Brand Accent */
|
| 23 |
+
:root {
|
| 24 |
+
--byteshape-accent: #cccccc;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
/* Headings — more space below, less above */
|
| 28 |
+
|
| 29 |
+
h2, h3, h4 {
|
| 30 |
+
margin-top: 16px !important;
|
| 31 |
+
margin-bottom: 14px !important;
|
| 32 |
+
font-weight: 1100;
|
| 33 |
+
border-bottom: 1px !important;
|
| 34 |
+
padding-bottom: 4px !important;
|
| 35 |
+
text-align: center !important;
|
| 36 |
+
}
|
| 37 |
+
h1 {
|
| 38 |
+
margin-top: 16px !important;
|
| 39 |
+
margin-bottom: 14px !important;
|
| 40 |
+
font-weight: 1100;
|
| 41 |
+
border-bottom: 1px !important;
|
| 42 |
+
padding-bottom: 4px !important;
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
/* Paragraphs — compact + justified */
|
| 46 |
+
p {
|
| 47 |
+
margin-top: 4px !important;
|
| 48 |
+
margin-bottom: 6px !important;
|
| 49 |
+
text-align: justify;
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
/* Lists — tighter line spacing + compact margins */
|
| 53 |
+
ul, ol {
|
| 54 |
+
margin-top: 4px !important;
|
| 55 |
+
margin-bottom: 4px !important;
|
| 56 |
+
padding-left: 20px !important;
|
| 57 |
+
}
|
| 58 |
+
li {
|
| 59 |
+
margin: 2px 0 !important;
|
| 60 |
+
line-height: 1.13 !important;
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
/* Tables — compact + soft ByteShape styling */
|
| 64 |
+
table {
|
| 65 |
+
margin-top: 4px !important;
|
| 66 |
+
margin-bottom: 6px !important;
|
| 67 |
+
border-collapse: collapse;
|
| 68 |
+
}
|
| 69 |
+
th {
|
| 70 |
+
padding: 6px !important;
|
| 71 |
+
border-bottom: 1px !important;
|
| 72 |
+
}
|
| 73 |
+
td {
|
| 74 |
+
padding: 4px 6px !important;
|
| 75 |
+
border-bottom: 1px !important;
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
/* Images — compact spacing */
|
| 79 |
+
img {
|
| 80 |
+
margin: 4px 0 !important;
|
| 81 |
+
border-radius: 3px;
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
/* Horizontal lines — HF-compatible, tightly spaced */
|
| 85 |
+
.markdown-body hr,
|
| 86 |
+
.markdown hr,
|
| 87 |
+
hr {
|
| 88 |
+
margin-top: 6px !important;
|
| 89 |
+
margin-bottom: 6px !important;
|
| 90 |
+
border: 0;
|
| 91 |
+
height: 1px;
|
| 92 |
+
}
|
| 93 |
+
/* Custom thin line after first section */
|
| 94 |
+
.section-divider {
|
| 95 |
+
width: 100%;
|
| 96 |
+
border-bottom: 1px dotted #999999;
|
| 97 |
+
margin: 12px 0;
|
| 98 |
+
}
|
| 99 |
+
</style>
|
| 100 |
+
|
| 101 |
+
# Llama-3.1-8B-Instruct GGUF (ShapeLearn Quantized)
|
| 102 |
+
<p>
|
| 103 |
+
This is a GGUF-quantized version of Llama 3.1 8B Instruct produced with <b>ByteShape's ShapeLearn</b>, which learns the optimal datatype per tensor to maintain high quality even at very low bit lengths (the exclusive focus on this release).
|
| 104 |
+
<br><br>
|
| 105 |
+
To learn more about ShapeLearn and to see detailed benchmarks of this model across multiple GPUs, CPUs, and even the Raspberry Pi, please visit our <a href="https://byteshape.com/blogs/Qwen3-4B-I-2507/">blog</a>.
|
| 106 |
+
<br><br>
|
| 107 |
+
If you have questions or want to share feedback, you can also reach us on <a href="https://www.reddit.com/r/ByteShape/">Reddit</a>.
|
| 108 |
+
</p>
|
| 109 |
+
|
| 110 |
+
<div class="section-divider"></div>
|
| 111 |
+
|
| 112 |
+
## How to Pick A Model
|
| 113 |
+
<p>
|
| 114 |
+
We provide <b>CPU and GPU optimized variants</b> for llama.cpp:
|
| 115 |
+
</p>
|
| 116 |
+
|
| 117 |
+
<ul>
|
| 118 |
+
<li><b>CPUs:</b> KQ quantization is preferred due to GGML kernel efficiency.</li>
|
| 119 |
+
<li><b>Nvidia GPUs:</b> IQ quantization delivers faster throughput on modern architectures.</li>
|
| 120 |
+
</ul>
|
| 121 |
+
|
| 122 |
+
<p>
|
| 123 |
+
Each hardware target includes a range of models covering different size–quality tradeoffs.
|
| 124 |
+
<br><br>
|
| 125 |
+
The charts below show <b>quality vs. tokens per second</b> for each device, comparing ShapeLearn models with Unsloth baselines.
|
| 126 |
+
<br><br>
|
| 127 |
+
<b>Selection rule:</b> Choose the model with the highest quality at your target throughput or the fastest model that still meets your required quality.
|
| 128 |
+
</p>
|
| 129 |
+
|
| 130 |
+
<div class="section-divider"></div>
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
### Understanding the Charts
|
| 134 |
+
|
| 135 |
+
The charts below show **quality vs. tokens per second** for each device, including ShapeLearn models alongside Unsloth baselines for direct comparison.
|
| 136 |
+
|
| 137 |
+
**Selection Strategy:** Choose the model with the best quality at your target throughput, or the fastest model that meets your quality requirements.
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
## GGUF-KQ Models: Best for CPU
|
| 142 |
+
|
| 143 |
+

|
| 144 |
+
|
| 145 |
+
<br>
|
| 146 |
+
<div align="center">
|
| 147 |
+
<b>Table sorted by inference speed (match the chart’s numbers to model IDs):</b>
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
<table style="border-collapse: collapse; margin-left:auto; margin-right:auto;">
|
| 151 |
+
|
| 152 |
+
<thead>
|
| 153 |
+
<tr font-weight:bold;">
|
| 154 |
+
<th style="padding:6px 10px;">Model ID</th>
|
| 155 |
+
<th style="padding:6px 10px;">Bits/Weight</th>
|
| 156 |
+
<th style="padding:6px 10px;">Model<br>Size HF</th>
|
| 157 |
+
<th style="padding:6px 10px;">Normalized<br>Score</th>
|
| 158 |
+
</tr>
|
| 159 |
+
</thead>
|
| 160 |
+
|
| 161 |
+
<tbody>
|
| 162 |
+
|
| 163 |
+
<tr>
|
| 164 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q3_K_S-2.91bpw.gguf">KQ-1</a></td>
|
| 165 |
+
<td>2.91</td>
|
| 166 |
+
<td>2.93 GB</td>
|
| 167 |
+
<td>83.03%</td>
|
| 168 |
+
</tr>
|
| 169 |
+
|
| 170 |
+
<tr >
|
| 171 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q3_K_S-3.06bpw.gguf">KQ-2</a></td>
|
| 172 |
+
<td>3.06</td>
|
| 173 |
+
<td>3.08 GB</td>
|
| 174 |
+
<td>87.68%</td>
|
| 175 |
+
</tr>
|
| 176 |
+
|
| 177 |
+
<tr>
|
| 178 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q3_K_S-3.24bpw.gguf">KQ-3</a></td>
|
| 179 |
+
<td>3.24</td>
|
| 180 |
+
<td>3.26 GB</td>
|
| 181 |
+
<td>90.10%</td>
|
| 182 |
+
</tr>
|
| 183 |
+
|
| 184 |
+
<tr >
|
| 185 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q3_K_S-3.34bpw.gguf">KQ-4</a></td>
|
| 186 |
+
<td>3.34</td>
|
| 187 |
+
<td>3.36 GB</td>
|
| 188 |
+
<td>92.40%</td>
|
| 189 |
+
</tr>
|
| 190 |
+
|
| 191 |
+
<tr>
|
| 192 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q3_K_S-3.41bpw.gguf">KQ-5</a></td>
|
| 193 |
+
<td>3.41</td>
|
| 194 |
+
<td>3.43 GB</td>
|
| 195 |
+
<td>93.20%</td>
|
| 196 |
+
</tr>
|
| 197 |
+
|
| 198 |
+
<tr >
|
| 199 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q4_K_S-3.60bpw.gguf">KQ-6</a></td>
|
| 200 |
+
<td>3.60</td>
|
| 201 |
+
<td>3.63 GB</td>
|
| 202 |
+
<td>94.85%</td>
|
| 203 |
+
</tr>
|
| 204 |
+
|
| 205 |
+
<tr>
|
| 206 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q4_K_S-3.83bpw.gguf">KQ-7</a></td>
|
| 207 |
+
<td>3.83</td>
|
| 208 |
+
<td>3.85 GB</td>
|
| 209 |
+
<td>92.89%</td>
|
| 210 |
+
</tr>
|
| 211 |
+
|
| 212 |
+
<tr >
|
| 213 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q4_K_S-4.21bpw.gguf">KQ-8</a></td>
|
| 214 |
+
<td>4.21</td>
|
| 215 |
+
<td>4.23 GB</td>
|
| 216 |
+
<td>96.15%</td>
|
| 217 |
+
</tr>
|
| 218 |
+
|
| 219 |
+
<tr>
|
| 220 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-Q4_K_S-4.31bpw.gguf">KQ-9</a></td>
|
| 221 |
+
<td>4.31</td>
|
| 222 |
+
<td>4.33 GB</td>
|
| 223 |
+
<td>97.94%</td>
|
| 224 |
+
</tr>
|
| 225 |
+
|
| 226 |
+
</tbody>
|
| 227 |
+
</table>
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
</div>
|
| 231 |
+
<div class="section-divider"></div>
|
| 232 |
+
|
| 233 |
+
## GGUF-IQ Models: Best for GPU
|
| 234 |
+
|
| 235 |
+

|
| 236 |
+
<br>
|
| 237 |
+
<div align="center">
|
| 238 |
+
<b>Table sorted by inference speed (match the chart’s numbers to model IDs):</b>
|
| 239 |
+
|
| 240 |
+
<table style="border-collapse: collapse; margin-left:auto; margin-right:auto;">
|
| 241 |
+
|
| 242 |
+
<thead>
|
| 243 |
+
<tr font-weight:bold;">
|
| 244 |
+
<th style="padding:6px 10px;">Model ID</th>
|
| 245 |
+
<th style="padding:6px 10px;">Bits/Weight</th>
|
| 246 |
+
<th style="padding:6px 10px;">Model<br>Size HF</th>
|
| 247 |
+
<th style="padding:6px 10px;">Normalized<br>Score</th>
|
| 248 |
+
</tr>
|
| 249 |
+
</thead>
|
| 250 |
+
|
| 251 |
+
<tbody>
|
| 252 |
+
|
| 253 |
+
<tr>
|
| 254 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ3_S-2.54bpw.gguf">IQ-1</a></td>
|
| 255 |
+
<td>2.54</td>
|
| 256 |
+
<td>2.56 GB</td>
|
| 257 |
+
<td>68.48%</td>
|
| 258 |
+
</tr>
|
| 259 |
+
|
| 260 |
+
<tr >
|
| 261 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ3_S-2.72bpw.gguf">IQ-2</a></td>
|
| 262 |
+
<td>2.72</td>
|
| 263 |
+
<td>2.74 GB</td>
|
| 264 |
+
<td>81.97%</td>
|
| 265 |
+
</tr>
|
| 266 |
+
|
| 267 |
+
<tr>
|
| 268 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ3_S-2.87bpw.gguf">IQ-3</a></td>
|
| 269 |
+
<td>2.87</td>
|
| 270 |
+
<td>2.89 GB</td>
|
| 271 |
+
<td>83.63%</td>
|
| 272 |
+
</tr>
|
| 273 |
+
|
| 274 |
+
<tr ">
|
| 275 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ3_S-3.01bpw.gguf">IQ-4</a></td>
|
| 276 |
+
<td>3.01</td>
|
| 277 |
+
<td>3.03 GB</td>
|
| 278 |
+
<td>86.02%</td>
|
| 279 |
+
</tr>
|
| 280 |
+
|
| 281 |
+
<tr>
|
| 282 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ3_S-3.09bpw.gguf">IQ-5</a></td>
|
| 283 |
+
<td>3.09</td>
|
| 284 |
+
<td>3.11 GB</td>
|
| 285 |
+
<td>87.75%</td>
|
| 286 |
+
</tr>
|
| 287 |
+
|
| 288 |
+
<tr >
|
| 289 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ3_S-3.31bpw.gguf">IQ-6</a></td>
|
| 290 |
+
<td>3.31</td>
|
| 291 |
+
<td>3.33 GB</td>
|
| 292 |
+
<td>89.56%</td>
|
| 293 |
+
</tr>
|
| 294 |
+
|
| 295 |
+
<tr>
|
| 296 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ4_XS-3.57bpw.gguf">IQ-7</a></td>
|
| 297 |
+
<td>3.57</td>
|
| 298 |
+
<td>3.59 GB</td>
|
| 299 |
+
<td>93.21%</td>
|
| 300 |
+
</tr>
|
| 301 |
+
|
| 302 |
+
<tr >
|
| 303 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ4_XS-3.94bpw.gguf">IQ-8</a></td>
|
| 304 |
+
<td>3.94</td>
|
| 305 |
+
<td>3.96 GB</td>
|
| 306 |
+
<td>95.65%</td>
|
| 307 |
+
</tr>
|
| 308 |
+
|
| 309 |
+
<tr>
|
| 310 |
+
<td><a href="https://huggingface.co/byteshape/Llama-3.1-8B-Instruct-GGUF/blob/main/Llama-3.1-8B-Instruct-IQ4_XS-4.05bpw.gguf">IQ-9</a></td>
|
| 311 |
+
<td>4.05</td>
|
| 312 |
+
<td>4.07 GB</td>
|
| 313 |
+
<td>95.71%</td>
|
| 314 |
+
</tr>
|
| 315 |
+
|
| 316 |
+
</tbody>
|
| 317 |
+
</table>
|
| 318 |
+
|
| 319 |
+
</div>
|
img/Intel.png
ADDED
|
Git LFS Details
|
img/RTX5090.png
ADDED
|
Git LFS Details
|