Update test_zimage.py
Browse files- test_zimage.py +54 -54
test_zimage.py
CHANGED
|
@@ -1,55 +1,55 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from diffusers import ZImagePipeline
|
| 3 |
-
import os
|
| 4 |
-
|
| 5 |
-
# 1. Load the pipeline
|
| 6 |
-
# Use bfloat16 for optimal performance on supported GPUs
|
| 7 |
-
pipe = ZImagePipeline.from_pretrained(
|
| 8 |
-
"
|
| 9 |
-
torch_dtype=torch.bfloat16,
|
| 10 |
-
low_cpu_mem_usage=False,
|
| 11 |
-
)
|
| 12 |
-
|
| 13 |
-
# =================【这里是新增的加载 LoRA 代码】=================
|
| 14 |
-
# 指向你刚才训练输出的文件夹路径
|
| 15 |
-
lora_dir = "./feifei-zimage-lora"
|
| 16 |
-
lora_file = "pytorch_lora_weights.safetensors"
|
| 17 |
-
full_path = os.path.join(lora_dir, lora_file)
|
| 18 |
-
|
| 19 |
-
if os.path.exists(full_path):
|
| 20 |
-
print(f"正在加载 LoRA: {full_path}")
|
| 21 |
-
try:
|
| 22 |
-
# adapter_name 可以随意起,用来标记这个 LoRA
|
| 23 |
-
pipe.load_lora_weights(lora_dir, weight_name=lora_file, adapter_name="feifei")
|
| 24 |
-
print("✅ LoRA 加载成功!")
|
| 25 |
-
|
| 26 |
-
# [可选] 设置 LoRA 的权重强度 (1.0 = 100% 强度, 0.5 = 50%)
|
| 27 |
-
# pipe.set_adapters(["feifei"], adapter_weights=[1.0])
|
| 28 |
-
|
| 29 |
-
except Exception as e:
|
| 30 |
-
print(f"❌ LoRA 加载失败: {e}")
|
| 31 |
-
print("可能是键名不匹配,或者文件损坏。")
|
| 32 |
-
else:
|
| 33 |
-
print(f"⚠️ 找不到 LoRA 文件: {full_path}")
|
| 34 |
-
# ===============================================================
|
| 35 |
-
|
| 36 |
-
pipe.to("cuda")
|
| 37 |
-
|
| 38 |
-
# [Optional] Attention Backend
|
| 39 |
-
# pipe.transformer.set_attention_backend("flash")
|
| 40 |
-
|
| 41 |
-
prompt = "jpop model in bikini at sea"
|
| 42 |
-
|
| 43 |
-
# 2. Generate Image
|
| 44 |
-
image = pipe(
|
| 45 |
-
prompt=prompt,
|
| 46 |
-
height=1024,
|
| 47 |
-
width=1024,
|
| 48 |
-
num_inference_steps=9,
|
| 49 |
-
guidance_scale=0.0,
|
| 50 |
-
generator=torch.Generator("cuda").manual_seed(42),
|
| 51 |
-
# cross_attention_kwargs={"scale": 1.0} # 另一种控制 LoRA 强度的方法
|
| 52 |
-
).images[0]
|
| 53 |
-
|
| 54 |
-
image.save("example_lora_test.png")
|
| 55 |
print("图像已保存为 example_lora_test.png")
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import ZImagePipeline
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# 1. Load the pipeline
|
| 6 |
+
# Use bfloat16 for optimal performance on supported GPUs
|
| 7 |
+
pipe = ZImagePipeline.from_pretrained(
|
| 8 |
+
"./Z-Image-Turbo",
|
| 9 |
+
torch_dtype=torch.bfloat16,
|
| 10 |
+
low_cpu_mem_usage=False,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
# =================【这里是新增的加载 LoRA 代码】=================
|
| 14 |
+
# 指向你刚才训练输出的文件夹路径
|
| 15 |
+
lora_dir = "./feifei-zimage-lora"
|
| 16 |
+
lora_file = "pytorch_lora_weights.safetensors"
|
| 17 |
+
full_path = os.path.join(lora_dir, lora_file)
|
| 18 |
+
|
| 19 |
+
if os.path.exists(full_path):
|
| 20 |
+
print(f"正在加载 LoRA: {full_path}")
|
| 21 |
+
try:
|
| 22 |
+
# adapter_name 可以随意起,用来标记这个 LoRA
|
| 23 |
+
pipe.load_lora_weights(lora_dir, weight_name=lora_file, adapter_name="feifei")
|
| 24 |
+
print("✅ LoRA 加载成功!")
|
| 25 |
+
|
| 26 |
+
# [可选] 设置 LoRA 的权重强度 (1.0 = 100% 强度, 0.5 = 50%)
|
| 27 |
+
# pipe.set_adapters(["feifei"], adapter_weights=[1.0])
|
| 28 |
+
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"❌ LoRA 加载失败: {e}")
|
| 31 |
+
print("可能是键名不匹配,或者文件损坏。")
|
| 32 |
+
else:
|
| 33 |
+
print(f"⚠️ 找不到 LoRA 文件: {full_path}")
|
| 34 |
+
# ===============================================================
|
| 35 |
+
|
| 36 |
+
pipe.to("cuda")
|
| 37 |
+
|
| 38 |
+
# [Optional] Attention Backend
|
| 39 |
+
# pipe.transformer.set_attention_backend("flash")
|
| 40 |
+
|
| 41 |
+
prompt = "jpop model in bikini at sea"
|
| 42 |
+
|
| 43 |
+
# 2. Generate Image
|
| 44 |
+
image = pipe(
|
| 45 |
+
prompt=prompt,
|
| 46 |
+
height=1024,
|
| 47 |
+
width=1024,
|
| 48 |
+
num_inference_steps=9,
|
| 49 |
+
guidance_scale=0.0,
|
| 50 |
+
generator=torch.Generator("cuda").manual_seed(42),
|
| 51 |
+
# cross_attention_kwargs={"scale": 1.0} # 另一种控制 LoRA 强度的方法
|
| 52 |
+
).images[0]
|
| 53 |
+
|
| 54 |
+
image.save("example_lora_test.png")
|
| 55 |
print("图像已保存为 example_lora_test.png")
|