Wajahat-Infinity commited on
Commit
42130ee
·
verified ·
1 Parent(s): 703c7ed

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ library_name: scikit-learn
5
+ tags:
6
+ - travel
7
+ - destination-prediction
8
+ - clustering
9
+ - recommendation-system
10
+ ---
11
+
12
+ # Destination Cluster Predictor
13
+
14
+ ## Model Description
15
+
16
+ This model is a machine learning system designed to predict and recommend travel destinations based on user preferences and requirements. It uses a combination of clustering and classification techniques to group similar destinations and make personalized recommendations.
17
+
18
+ ### Model Type
19
+
20
+ The model consists of three main components:
21
+ - A clustering model (`destination_clustering_model.pkl`)
22
+ - Label encoders for categorical features (`destination_label_encoders.pkl`)
23
+ - A scaler for numerical features (`destination_scaler.pkl`)
24
+
25
+ ### Input Features
26
+
27
+ The model takes the following input features:
28
+
29
+ 1. **Interest**: Combinations of interests (Mountains, Wildlife, Adventure, Culture, etc.)
30
+ 2. **Goal**: Travel goals (Adventure, Exploration, Photography, Trekking, etc.)
31
+ 3. **Climate**: Weather conditions (Temperate, Cold, Moderate, Cool, Warm, etc.)
32
+ 4. **Solo/Group**: Travel type (Solo, Group, or Solo/Group)
33
+ 5. **Access**: Transportation options (Road, Trek, Air, Boat, etc.)
34
+ 6. **Distance**: Numerical value (10-1500 km)
35
+ 7. **Latitude**: Numerical value (24-37)
36
+ 8. **Longitude**: Numerical value (60-78)
37
+ 9. **Activity**: Various activities and their combinations
38
+
39
+ ### Output
40
+
41
+ The model outputs:
42
+ - A predicted destination cluster
43
+ - Top 5 destination recommendations based on the input preferences
44
+
45
+ ## Training Data
46
+
47
+ The model was trained on a dataset of travel destinations with their associated features and characteristics. The training data is stored in `data.xlsx` and contains 125 entries.
48
+
49
+ ## Training Procedure
50
+
51
+ The model uses a combination of:
52
+ - Label encoding for categorical variables
53
+ - Standard scaling for numerical features
54
+ - Clustering algorithm for destination grouping
55
+
56
+ ## Evaluation
57
+
58
+ The model's performance is evaluated based on:
59
+ - Cluster coherence
60
+ - Recommendation relevance
61
+ - User preference matching
62
+
63
+ ## Limitations
64
+
65
+ - The model's recommendations are limited to the destinations present in the training data
66
+ - Geographic coordinates are constrained to specific ranges (Latitude: 24-37, Longitude: 60-78)
67
+ - Distance recommendations are limited to 10-1500 km range
68
+
69
+ ## Usage
70
+
71
+ ```python
72
+ # Example usage
73
+ from predictor.models import DestinationPredictor
74
+
75
+ predictor = DestinationPredictor()
76
+ recommendations = predictor.predict(
77
+ interest="Mountains",
78
+ goal="Adventure",
79
+ climate="Temperate",
80
+ travel_type="Solo",
81
+ access="Road",
82
+ distance=500,
83
+ latitude=30,
84
+ longitude=70,
85
+ activity="Trekking"
86
+ )
87
+ ```
88
+
89
+ ## Environmental Impact
90
+
91
+ The model is lightweight and can run efficiently on standard hardware. No special GPU requirements are needed for inference.
92
+
93
+ ## Citation
94
+
95
+ If you use this model in your research or application, please cite:
96
+
97
+ ```bibtex
98
+ @misc{destination_predictor,
99
+ author = {Your Name},
100
+ title = {Destination Cluster Predictor},
101
+ year = {2024},
102
+ publisher = {Hugging Face},
103
+ journal = {Hugging Face Hub},
104
+ howpublished = {\url{https://huggingface.co/your-username/destination-predictor}}
105
+ }
106
+ ```
107
+
108
+ ## License
109
+
110
+ This model is licensed under the MIT License.