""" # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Configuration for ColQwen3, adapted to mirror the ColQwen2 structure. """ from copy import deepcopy from typing import Any from transformers.configuration_utils import PretrainedConfig from transformers.models.auto import CONFIG_MAPPING from transformers.models.qwen3_vl.configuration_qwen3_vl import Qwen3VLTextConfig, Qwen3VLVisionConfig from transformers.utils import logging logger = logging.get_logger(__name__) class ColQwen3Config(PretrainedConfig): """Configuration for ColQwen3 retrieval model.""" model_type = "colqwen3" sub_configs: dict[str, Any] = {"vision_config": Qwen3VLVisionConfig, "text_config": Qwen3VLTextConfig} def __init__( self, vision_config: Any = None, text_config: Any = None, embed_dim: int = 320, padding_side: str = "left", initializer_range: float = 0.02, dtype: str | None = None, **kwargs, ): if vision_config is None or text_config is None: base_vlm_config = CONFIG_MAPPING["qwen3_vl"]() if vision_config is None: vision_config = deepcopy(base_vlm_config.vision_config) logger.info("`vision_config` is `None`. Initializing with the default `Qwen3VLVisionConfig`.") if text_config is None: text_config = deepcopy(base_vlm_config.text_config) logger.info("`text_config` is `None`. Initializing with the default `Qwen3VLTextConfig`.") if isinstance(vision_config, dict): vision_config = Qwen3VLVisionConfig(**deepcopy(vision_config)) elif not isinstance(vision_config, PretrainedConfig): raise TypeError( f"Invalid type for `vision_config`. Expected `PretrainedConfig`, `dict`, or `None`, got {type(vision_config)}." ) if isinstance(text_config, dict): text_config = Qwen3VLTextConfig(**deepcopy(text_config)) elif not isinstance(text_config, PretrainedConfig): raise TypeError( f"Invalid type for `text_config`. Expected `PretrainedConfig`, `dict`, or `None`, got {type(text_config)}." ) if embed_dim <= 0: raise ValueError(f"`embed_dim` must be positive, got {embed_dim}.") super().__init__(**kwargs) self.vision_config = vision_config self.text_config = text_config self.embed_dim = embed_dim self.padding_side = padding_side self.initializer_range = initializer_range # Preserve incoming dtype so downstream models avoid attribute errors self.dtype = dtype or getattr(self, "dtype", None) @classmethod def from_base_config(cls, base_config: PretrainedConfig) -> "ColQwen3Config": """Upgrade a base Qwen3VLConfig-like config into ColQwen3Config.""" if isinstance(base_config, dict): data = dict(base_config) else: data = base_config.to_dict() vision_cfg = data.get("vision_config") if isinstance(vision_cfg, dict): data["vision_config"] = Qwen3VLVisionConfig.from_dict(vision_cfg) text_cfg = data.get("text_config") if isinstance(text_cfg, dict): data["text_config"] = Qwen3VLTextConfig.from_dict(text_cfg) data.setdefault("model_type", cls.model_type) if hasattr(base_config, "dtype"): data.setdefault("dtype", getattr(base_config, "dtype")) elif hasattr(base_config, "torch_dtype") and base_config.torch_dtype is not None: data.setdefault("dtype", str(base_config.torch_dtype)) return cls.from_dict(data) def get_text_config(self, *args, **kwargs) -> PretrainedConfig: return self.text_config DEFAULT_CONFIG = ColQwen3Config() __all__ = ["ColQwen3Config", "DEFAULT_CONFIG"]