Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- README.md +240 -0
- added_tokens.json +28 -0
- chat_template.jinja +120 -0
- config.json +86 -0
- configuration_colqwen3.py +112 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_colqwen3.py +260 -0
- preprocessor_config.json +42 -0
- processing_colqwen3.py +723 -0
- processor_config.json +11 -0
- quantization_config.json +14 -0
- quantization_metadata.json +17 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +243 -0
- video_preprocessor_config.json +45 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
results_*
|
README.md
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
license_name: apache-2.0
|
| 4 |
+
license_link: https://www.apache.org/licenses/LICENSE-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- text
|
| 7 |
+
- image
|
| 8 |
+
- video
|
| 9 |
+
- multimodal-embedding
|
| 10 |
+
- vidore
|
| 11 |
+
- colpali
|
| 12 |
+
- colqwen3
|
| 13 |
+
- multilingual-embedding
|
| 14 |
+
- quantized
|
| 15 |
+
- awq
|
| 16 |
+
- autoround
|
| 17 |
+
- w4a16
|
| 18 |
+
language:
|
| 19 |
+
- multilingual
|
| 20 |
+
library_name: transformers
|
| 21 |
+
pipeline_tag: visual-document-retrieval
|
| 22 |
+
base_model:
|
| 23 |
+
- TomoroAI/tomoro-colqwen3-embed-4b
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
# TomoroAI/tomoro-ai-colqwen3-embed-4b-awq
|
| 27 |
+
|
| 28 |
+
## Overview
|
| 29 |
+
|
| 30 |
+
This is a **W4A16 quantized** version of [TomoroAI/tomoro-colqwen3-embed-4b](https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-4b), a state-of-the-art [ColPali](https://arxiv.org/abs/2407.01449)-style multimodal embedding model. The quantization was performed using [AutoRound](https://github.com/intel/auto-round) with AutoAWQ backend.
|
| 31 |
+
|
| 32 |
+
The quantized model achieves **~3.5 GB memory usage** (vs 8.4 GB for the original), enabling deployment on consumer GPUs while maintaining competitive retrieval performance.
|
| 33 |
+
|
| 34 |
+
## Model Details
|
| 35 |
+
|
| 36 |
+
| Property | Value |
|
| 37 |
+
|----------|-------|
|
| 38 |
+
| **Original Model** | [TomoroAI/tomoro-colqwen3-embed-4b](https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-4b) |
|
| 39 |
+
| **Parameters** | 4.0B |
|
| 40 |
+
| **Quantization** | W4A16 (4-bit weights, 16-bit activations) |
|
| 41 |
+
| **Quantization Method** | AutoRound with AutoAWQ backend |
|
| 42 |
+
| **Calibration Sequence Length** | 1024 |
|
| 43 |
+
| **Memory Usage (Quantized)** | ~3.5 GB |
|
| 44 |
+
| **Memory Usage (Original)** | 8.4 GB |
|
| 45 |
+
| **Embedding Dimension** | 320 |
|
| 46 |
+
| **Max Visual Tokens** | 1280 |
|
| 47 |
+
|
| 48 |
+
## Quantization Configuration
|
| 49 |
+
|
| 50 |
+
| Parameter | Value |
|
| 51 |
+
|-----------|-------|
|
| 52 |
+
| **Bits** | 4 |
|
| 53 |
+
| **Group Size** | 128 |
|
| 54 |
+
| **Symmetric** | True |
|
| 55 |
+
| **Calibration Dataset** | NeelNanda/pile-10k (AutoRound default) |
|
| 56 |
+
| **Calibration Sequence Length** | 1024 |
|
| 57 |
+
| **Iterations** | 1000 |
|
| 58 |
+
| **Number of Samples** | 560 |
|
| 59 |
+
| **Batch Size** | 80 |
|
| 60 |
+
| **Quantized Layers** | 252 |
|
| 61 |
+
| **FP16 Layers (Vision)** | 105 |
|
| 62 |
+
|
| 63 |
+
> **Note:** Only the text tower (language model) is quantized. The vision encoder remains in FP16/BF16 to preserve visual feature quality.
|
| 64 |
+
|
| 65 |
+
## Performance
|
| 66 |
+
|
| 67 |
+
### NDCG@5 on ViDoRe Benchmark (All Languages)
|
| 68 |
+
|
| 69 |
+
| Model | Average NDCG@5 | Change |
|
| 70 |
+
|-------|----------------|--------|
|
| 71 |
+
| Original (FP16) | 0.70023 | - |
|
| 72 |
+
| **This Model (W4A16, seqlen=1024)** | **0.69768** | **-0.36%** |
|
| 73 |
+
|
| 74 |
+
### NDCG@5 on ViDoRe Benchmark (English Only)
|
| 75 |
+
|
| 76 |
+
| Model | Average NDCG@5 | Change |
|
| 77 |
+
|-------|----------------|--------|
|
| 78 |
+
| Original (FP16) | 0.74743 | - |
|
| 79 |
+
| **This Model (W4A16, seqlen=1024)** | **0.74582** | **-0.21%** |
|
| 80 |
+
|
| 81 |
+
### Performance Summary
|
| 82 |
+
|
| 83 |
+
- **Benchmarks Improved:** 17
|
| 84 |
+
- **Benchmarks Degraded:** 23
|
| 85 |
+
- **Overall Quality Retention:** ~99.6%
|
| 86 |
+
|
| 87 |
+
### Benchmark Comparison Charts
|
| 88 |
+
|
| 89 |
+
> **Note:** Here, "seqlen" refers to the **calibration dataset sequence length used during quantization**, not the maximum sequence length supported by the original model. The model retains the full sequence length of the original, but quantization statistics are collected with the calibration seqlen shown.
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
#### Performance Comparison (All Languages)
|
| 93 |
+
|
| 94 |
+

|
| 95 |
+
|
| 96 |
+
#### Performance Difference vs Original (All Languages)
|
| 97 |
+
|
| 98 |
+

|
| 99 |
+
|
| 100 |
+
#### Performance Comparison (English Only)
|
| 101 |
+
|
| 102 |
+

|
| 103 |
+
|
| 104 |
+
#### Performance Difference vs Original (English Only)
|
| 105 |
+
|
| 106 |
+

|
| 107 |
+
|
| 108 |
+
## Memory Efficiency
|
| 109 |
+
|
| 110 |
+
The quantized model enables deployment on GPUs with limited memory:
|
| 111 |
+
|
| 112 |
+
| GPU Memory | Original Model | Quantized Model |
|
| 113 |
+
|------------|----------------|-----------------|
|
| 114 |
+
| 8 GB | Marginal | Fits with batch size ~64 |
|
| 115 |
+
| 12 GB | Fits comfortably | Fits with batch size ~256 |
|
| 116 |
+
| 16 GB | Fits comfortably | High batch sizes possible |
|
| 117 |
+
| 24 GB | Fits comfortably | High batch sizes possible |
|
| 118 |
+
|
| 119 |
+
## Usage
|
| 120 |
+
|
| 121 |
+
### Prerequisites
|
| 122 |
+
|
| 123 |
+
```bash
|
| 124 |
+
pip install torch==2.8.0 torchvision==0.23.0 --index-url https://download.pytorch.org/whl/cu128
|
| 125 |
+
pip install auto-round==0.9.2
|
| 126 |
+
pip install autoawq==0.2.9
|
| 127 |
+
pip install transformers pillow requests
|
| 128 |
+
pip install flash-attn --no-build-isolation # Optional but recommended
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
### Inference Code
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
import torch
|
| 135 |
+
from transformers import AutoModel, AutoProcessor
|
| 136 |
+
from PIL import Image
|
| 137 |
+
import requests
|
| 138 |
+
from io import BytesIO
|
| 139 |
+
|
| 140 |
+
# Configuration
|
| 141 |
+
MODEL_ID = "shubhamg2208/tomoro-ai-colqwen3-embed-4b-w4a16-autoawq-seqlen-1024"
|
| 142 |
+
DTYPE = torch.bfloat16
|
| 143 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 144 |
+
|
| 145 |
+
# Load Model & Processor
|
| 146 |
+
processor = AutoProcessor.from_pretrained(
|
| 147 |
+
MODEL_ID,
|
| 148 |
+
trust_remote_code=True,
|
| 149 |
+
max_num_visual_tokens=1280,
|
| 150 |
+
)
|
| 151 |
+
model = AutoModel.from_pretrained(
|
| 152 |
+
MODEL_ID,
|
| 153 |
+
dtype=DTYPE,
|
| 154 |
+
attn_implementation="sdpa", # Use "flash_attention_2" if available
|
| 155 |
+
trust_remote_code=True,
|
| 156 |
+
device_map=DEVICE,
|
| 157 |
+
).eval()
|
| 158 |
+
|
| 159 |
+
# Sample queries and documents
|
| 160 |
+
queries = [
|
| 161 |
+
"Retrieve the city of Singapore",
|
| 162 |
+
"Retrieve the city of Beijing",
|
| 163 |
+
]
|
| 164 |
+
doc_urls = [
|
| 165 |
+
"https://upload.wikimedia.org/wikipedia/commons/2/27/Singapore_skyline_2022.jpg",
|
| 166 |
+
"https://upload.wikimedia.org/wikipedia/commons/6/61/Beijing_skyline_at_night.JPG",
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
def load_image(url: str) -> Image.Image:
|
| 170 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
| 171 |
+
resp = requests.get(url, headers=headers, timeout=10)
|
| 172 |
+
resp.raise_for_status()
|
| 173 |
+
return Image.open(BytesIO(resp.content)).convert("RGB")
|
| 174 |
+
|
| 175 |
+
def encode_queries(texts):
|
| 176 |
+
batch = processor.process_texts(texts=texts)
|
| 177 |
+
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
| 178 |
+
with torch.inference_mode():
|
| 179 |
+
out = model(**batch)
|
| 180 |
+
return out.embeddings.to(torch.bfloat16).cpu()
|
| 181 |
+
|
| 182 |
+
def encode_docs(urls):
|
| 183 |
+
images = [load_image(url) for url in urls]
|
| 184 |
+
features = processor.process_images(images=images)
|
| 185 |
+
features = {k: v.to(DEVICE) if isinstance(v, torch.Tensor) else v for k, v in features.items()}
|
| 186 |
+
with torch.inference_mode():
|
| 187 |
+
out = model(**features)
|
| 188 |
+
return out.embeddings.to(torch.bfloat16).cpu()
|
| 189 |
+
|
| 190 |
+
# Encode and score
|
| 191 |
+
query_embeddings = encode_queries(queries)
|
| 192 |
+
doc_embeddings = encode_docs(doc_urls)
|
| 193 |
+
scores = processor.score_multi_vector(query_embeddings, doc_embeddings)
|
| 194 |
+
print(scores)
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
## Comparison with Other Calibration Lengths
|
| 198 |
+
|
| 199 |
+
| Calibration Length | Avg NDCG@5 | Delta | Best For |
|
| 200 |
+
|--------------------|------------|-------|----------|
|
| 201 |
+
| seqlen=256 | 0.69611 | -0.59% | Short document retrieval |
|
| 202 |
+
| seqlen=512 | 0.69696 | -0.47% | Balanced use cases |
|
| 203 |
+
| seqlen=1024 | 0.69768 | -0.36% | Long document retrieval |
|
| 204 |
+
|
| 205 |
+
## Limitations
|
| 206 |
+
|
| 207 |
+
- **Reduced Precision:** 4-bit quantization introduces some accuracy loss compared to the original FP16 model.
|
| 208 |
+
- **Vision Encoder:** The vision encoder is not quantized to preserve visual feature quality.
|
| 209 |
+
- **Inference Backend:** Performance depends on the inference backend (AutoAWQ, vLLM, etc.).
|
| 210 |
+
|
| 211 |
+
## License
|
| 212 |
+
|
| 213 |
+
This model is released under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0), consistent with the original model.
|
| 214 |
+
|
| 215 |
+
## Acknowledgements
|
| 216 |
+
|
| 217 |
+
- **Original Model:** [TomoroAI/tomoro-colqwen3-embed-4b](https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-4b) by [Tomoro AI](https://tomoro.ai/)
|
| 218 |
+
- **Quantization Tool:** [AutoRound](https://github.com/intel/auto-round) by Intel
|
| 219 |
+
- **Base Architecture:** [Qwen3-VL](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct) by Alibaba
|
| 220 |
+
|
| 221 |
+
## Citation
|
| 222 |
+
|
| 223 |
+
If you use this model, please cite both the original model and this quantized version:
|
| 224 |
+
|
| 225 |
+
```bibtex
|
| 226 |
+
@misc{huang2025beyond,
|
| 227 |
+
author = {Huang, Xin and Tan, Kye Min},
|
| 228 |
+
title = {Beyond Text: Unlocking True Multimodal, End-to-end RAG with Tomoro ColQwen3},
|
| 229 |
+
year = {2025},
|
| 230 |
+
url = {https://tomoro.ai/insights/beyond-text-unlocking-true-multimodal-end-to-end-rag-with-tomoro-colqwen3},
|
| 231 |
+
publisher = {Tomoro.ai}
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
@misc{autoround,
|
| 235 |
+
author = {Intel Corporation},
|
| 236 |
+
title = {AutoRound: Advanced Weight-Only Quantization Algorithm},
|
| 237 |
+
year = {2024},
|
| 238 |
+
url = {https://github.com/intel/auto-round}
|
| 239 |
+
}
|
| 240 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{%- if messages[0].content is string %}
|
| 5 |
+
{{- messages[0].content }}
|
| 6 |
+
{%- else %}
|
| 7 |
+
{%- for content in messages[0].content %}
|
| 8 |
+
{%- if 'text' in content %}
|
| 9 |
+
{{- content.text }}
|
| 10 |
+
{%- endif %}
|
| 11 |
+
{%- endfor %}
|
| 12 |
+
{%- endif %}
|
| 13 |
+
{{- '\n\n' }}
|
| 14 |
+
{%- endif %}
|
| 15 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 16 |
+
{%- for tool in tools %}
|
| 17 |
+
{{- "\n" }}
|
| 18 |
+
{{- tool | tojson }}
|
| 19 |
+
{%- endfor %}
|
| 20 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 21 |
+
{%- else %}
|
| 22 |
+
{%- if messages[0].role == 'system' %}
|
| 23 |
+
{{- '<|im_start|>system\n' }}
|
| 24 |
+
{%- if messages[0].content is string %}
|
| 25 |
+
{{- messages[0].content }}
|
| 26 |
+
{%- else %}
|
| 27 |
+
{%- for content in messages[0].content %}
|
| 28 |
+
{%- if 'text' in content %}
|
| 29 |
+
{{- content.text }}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- endfor %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '<|im_end|>\n' }}
|
| 34 |
+
{%- endif %}
|
| 35 |
+
{%- endif %}
|
| 36 |
+
{%- set image_count = namespace(value=0) %}
|
| 37 |
+
{%- set video_count = namespace(value=0) %}
|
| 38 |
+
{%- for message in messages %}
|
| 39 |
+
{%- if message.role == "user" %}
|
| 40 |
+
{{- '<|im_start|>' + message.role + '\n' }}
|
| 41 |
+
{%- if message.content is string %}
|
| 42 |
+
{{- message.content }}
|
| 43 |
+
{%- else %}
|
| 44 |
+
{%- for content in message.content %}
|
| 45 |
+
{%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
|
| 46 |
+
{%- set image_count.value = image_count.value + 1 %}
|
| 47 |
+
{%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
|
| 48 |
+
<|vision_start|><|image_pad|><|vision_end|>
|
| 49 |
+
{%- elif content.type == 'video' or 'video' in content %}
|
| 50 |
+
{%- set video_count.value = video_count.value + 1 %}
|
| 51 |
+
{%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
|
| 52 |
+
<|vision_start|><|video_pad|><|vision_end|>
|
| 53 |
+
{%- elif 'text' in content %}
|
| 54 |
+
{{- content.text }}
|
| 55 |
+
{%- endif %}
|
| 56 |
+
{%- endfor %}
|
| 57 |
+
{%- endif %}
|
| 58 |
+
{{- '<|im_end|>\n' }}
|
| 59 |
+
{%- elif message.role == "assistant" %}
|
| 60 |
+
{{- '<|im_start|>' + message.role + '\n' }}
|
| 61 |
+
{%- if message.content is string %}
|
| 62 |
+
{{- message.content }}
|
| 63 |
+
{%- else %}
|
| 64 |
+
{%- for content_item in message.content %}
|
| 65 |
+
{%- if 'text' in content_item %}
|
| 66 |
+
{{- content_item.text }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{%- endfor %}
|
| 69 |
+
{%- endif %}
|
| 70 |
+
{%- if message.tool_calls %}
|
| 71 |
+
{%- for tool_call in message.tool_calls %}
|
| 72 |
+
{%- if (loop.first and message.content) or (not loop.first) %}
|
| 73 |
+
{{- '\n' }}
|
| 74 |
+
{%- endif %}
|
| 75 |
+
{%- if tool_call.function %}
|
| 76 |
+
{%- set tool_call = tool_call.function %}
|
| 77 |
+
{%- endif %}
|
| 78 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 79 |
+
{{- tool_call.name }}
|
| 80 |
+
{{- '", "arguments": ' }}
|
| 81 |
+
{%- if tool_call.arguments is string %}
|
| 82 |
+
{{- tool_call.arguments }}
|
| 83 |
+
{%- else %}
|
| 84 |
+
{{- tool_call.arguments | tojson }}
|
| 85 |
+
{%- endif %}
|
| 86 |
+
{{- '}\n</tool_call>' }}
|
| 87 |
+
{%- endfor %}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{{- '<|im_end|>\n' }}
|
| 90 |
+
{%- elif message.role == "tool" %}
|
| 91 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 92 |
+
{{- '<|im_start|>user' }}
|
| 93 |
+
{%- endif %}
|
| 94 |
+
{{- '\n<tool_response>\n' }}
|
| 95 |
+
{%- if message.content is string %}
|
| 96 |
+
{{- message.content }}
|
| 97 |
+
{%- else %}
|
| 98 |
+
{%- for content in message.content %}
|
| 99 |
+
{%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
|
| 100 |
+
{%- set image_count.value = image_count.value + 1 %}
|
| 101 |
+
{%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
|
| 102 |
+
<|vision_start|><|image_pad|><|vision_end|>
|
| 103 |
+
{%- elif content.type == 'video' or 'video' in content %}
|
| 104 |
+
{%- set video_count.value = video_count.value + 1 %}
|
| 105 |
+
{%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
|
| 106 |
+
<|vision_start|><|video_pad|><|vision_end|>
|
| 107 |
+
{%- elif 'text' in content %}
|
| 108 |
+
{{- content.text }}
|
| 109 |
+
{%- endif %}
|
| 110 |
+
{%- endfor %}
|
| 111 |
+
{%- endif %}
|
| 112 |
+
{{- '\n</tool_response>' }}
|
| 113 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 114 |
+
{{- '<|im_end|>\n' }}
|
| 115 |
+
{%- endif %}
|
| 116 |
+
{%- endif %}
|
| 117 |
+
{%- endfor %}
|
| 118 |
+
{%- if add_generation_prompt %}
|
| 119 |
+
{{- '<|im_start|>assistant\n' }}
|
| 120 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ColQwen3"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_colqwen3.ColQwen3Config",
|
| 7 |
+
"AutoModel": "modeling_colqwen3.ColQwen3"
|
| 8 |
+
},
|
| 9 |
+
"dtype": "bfloat16",
|
| 10 |
+
"embed_dim": 320,
|
| 11 |
+
"image_token_id": 151655,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"max_num_visual_tokens": 1280,
|
| 14 |
+
"model_type": "colqwen3",
|
| 15 |
+
"padding_side": "left",
|
| 16 |
+
"quantization_config": {
|
| 17 |
+
"autoround_version": "0.9.2",
|
| 18 |
+
"batch_size": 80,
|
| 19 |
+
"bits": 4,
|
| 20 |
+
"block_name_to_quantize": "vlm.model.language_model.layers",
|
| 21 |
+
"data_type": "int",
|
| 22 |
+
"group_size": 128,
|
| 23 |
+
"iters": 1000,
|
| 24 |
+
"nsamples": 560,
|
| 25 |
+
"packing_format": "auto_round:auto_gptq",
|
| 26 |
+
"quant_method": "auto-round",
|
| 27 |
+
"seqlen": 1024,
|
| 28 |
+
"sym": true
|
| 29 |
+
},
|
| 30 |
+
"text_config": {
|
| 31 |
+
"attention_bias": false,
|
| 32 |
+
"attention_dropout": 0.0,
|
| 33 |
+
"bos_token_id": 151643,
|
| 34 |
+
"dtype": "bfloat16",
|
| 35 |
+
"eos_token_id": 151645,
|
| 36 |
+
"head_dim": 128,
|
| 37 |
+
"hidden_act": "silu",
|
| 38 |
+
"hidden_size": 2560,
|
| 39 |
+
"initializer_range": 0.02,
|
| 40 |
+
"intermediate_size": 9728,
|
| 41 |
+
"max_position_embeddings": 262144,
|
| 42 |
+
"model_type": "qwen3_vl_text",
|
| 43 |
+
"num_attention_heads": 32,
|
| 44 |
+
"num_hidden_layers": 36,
|
| 45 |
+
"num_key_value_heads": 8,
|
| 46 |
+
"rms_norm_eps": 1e-06,
|
| 47 |
+
"rope_scaling": {
|
| 48 |
+
"mrope_interleaved": true,
|
| 49 |
+
"mrope_section": [
|
| 50 |
+
24,
|
| 51 |
+
20,
|
| 52 |
+
20
|
| 53 |
+
],
|
| 54 |
+
"rope_type": "default"
|
| 55 |
+
},
|
| 56 |
+
"rope_theta": 5000000,
|
| 57 |
+
"tie_word_embeddings": true,
|
| 58 |
+
"use_cache": true,
|
| 59 |
+
"vocab_size": 151936
|
| 60 |
+
},
|
| 61 |
+
"transformers_version": "4.57.3",
|
| 62 |
+
"video_token_id": 151656,
|
| 63 |
+
"vision_config": {
|
| 64 |
+
"deepstack_visual_indexes": [
|
| 65 |
+
5,
|
| 66 |
+
11,
|
| 67 |
+
17
|
| 68 |
+
],
|
| 69 |
+
"depth": 24,
|
| 70 |
+
"dtype": "bfloat16",
|
| 71 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 72 |
+
"hidden_size": 1024,
|
| 73 |
+
"in_channels": 3,
|
| 74 |
+
"initializer_range": 0.02,
|
| 75 |
+
"intermediate_size": 4096,
|
| 76 |
+
"model_type": "qwen3_vl",
|
| 77 |
+
"num_heads": 16,
|
| 78 |
+
"num_position_embeddings": 2304,
|
| 79 |
+
"out_hidden_size": 2560,
|
| 80 |
+
"patch_size": 16,
|
| 81 |
+
"spatial_merge_size": 2,
|
| 82 |
+
"temporal_patch_size": 2
|
| 83 |
+
},
|
| 84 |
+
"vision_end_token_id": 151653,
|
| 85 |
+
"vision_start_token_id": 151652
|
| 86 |
+
}
|
configuration_colqwen3.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
# Copyright 2025 The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
Configuration for ColQwen3, adapted to mirror the ColQwen2 structure.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from copy import deepcopy
|
| 20 |
+
from typing import Any
|
| 21 |
+
|
| 22 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 23 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 24 |
+
from transformers.models.qwen3_vl.configuration_qwen3_vl import Qwen3VLTextConfig, Qwen3VLVisionConfig
|
| 25 |
+
from transformers.utils import logging
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
logger = logging.get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ColQwen3Config(PretrainedConfig):
|
| 32 |
+
"""Configuration for ColQwen3 retrieval model."""
|
| 33 |
+
|
| 34 |
+
model_type = "colqwen3"
|
| 35 |
+
sub_configs: dict[str, Any] = {"vision_config": Qwen3VLVisionConfig, "text_config": Qwen3VLTextConfig}
|
| 36 |
+
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
vision_config: Any = None,
|
| 40 |
+
text_config: Any = None,
|
| 41 |
+
embed_dim: int = 320,
|
| 42 |
+
padding_side: str = "left",
|
| 43 |
+
initializer_range: float = 0.02,
|
| 44 |
+
dtype: str | None = None,
|
| 45 |
+
**kwargs,
|
| 46 |
+
):
|
| 47 |
+
if vision_config is None or text_config is None:
|
| 48 |
+
base_vlm_config = CONFIG_MAPPING["qwen3_vl"]()
|
| 49 |
+
if vision_config is None:
|
| 50 |
+
vision_config = deepcopy(base_vlm_config.vision_config)
|
| 51 |
+
logger.info("`vision_config` is `None`. Initializing with the default `Qwen3VLVisionConfig`.")
|
| 52 |
+
if text_config is None:
|
| 53 |
+
text_config = deepcopy(base_vlm_config.text_config)
|
| 54 |
+
logger.info("`text_config` is `None`. Initializing with the default `Qwen3VLTextConfig`.")
|
| 55 |
+
|
| 56 |
+
if isinstance(vision_config, dict):
|
| 57 |
+
vision_config = Qwen3VLVisionConfig(**deepcopy(vision_config))
|
| 58 |
+
elif not isinstance(vision_config, PretrainedConfig):
|
| 59 |
+
raise TypeError(
|
| 60 |
+
f"Invalid type for `vision_config`. Expected `PretrainedConfig`, `dict`, or `None`, got {type(vision_config)}."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
if isinstance(text_config, dict):
|
| 64 |
+
text_config = Qwen3VLTextConfig(**deepcopy(text_config))
|
| 65 |
+
elif not isinstance(text_config, PretrainedConfig):
|
| 66 |
+
raise TypeError(
|
| 67 |
+
f"Invalid type for `text_config`. Expected `PretrainedConfig`, `dict`, or `None`, got {type(text_config)}."
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
if embed_dim <= 0:
|
| 71 |
+
raise ValueError(f"`embed_dim` must be positive, got {embed_dim}.")
|
| 72 |
+
|
| 73 |
+
super().__init__(**kwargs)
|
| 74 |
+
self.vision_config = vision_config
|
| 75 |
+
self.text_config = text_config
|
| 76 |
+
self.embed_dim = embed_dim
|
| 77 |
+
self.padding_side = padding_side
|
| 78 |
+
self.initializer_range = initializer_range
|
| 79 |
+
# Preserve incoming dtype so downstream models avoid attribute errors
|
| 80 |
+
self.dtype = dtype or getattr(self, "dtype", None)
|
| 81 |
+
|
| 82 |
+
@classmethod
|
| 83 |
+
def from_base_config(cls, base_config: PretrainedConfig) -> "ColQwen3Config":
|
| 84 |
+
"""Upgrade a base Qwen3VLConfig-like config into ColQwen3Config."""
|
| 85 |
+
if isinstance(base_config, dict):
|
| 86 |
+
data = dict(base_config)
|
| 87 |
+
else:
|
| 88 |
+
data = base_config.to_dict()
|
| 89 |
+
|
| 90 |
+
vision_cfg = data.get("vision_config")
|
| 91 |
+
if isinstance(vision_cfg, dict):
|
| 92 |
+
data["vision_config"] = Qwen3VLVisionConfig.from_dict(vision_cfg)
|
| 93 |
+
|
| 94 |
+
text_cfg = data.get("text_config")
|
| 95 |
+
if isinstance(text_cfg, dict):
|
| 96 |
+
data["text_config"] = Qwen3VLTextConfig.from_dict(text_cfg)
|
| 97 |
+
|
| 98 |
+
data.setdefault("model_type", cls.model_type)
|
| 99 |
+
if hasattr(base_config, "dtype"):
|
| 100 |
+
data.setdefault("dtype", getattr(base_config, "dtype"))
|
| 101 |
+
elif hasattr(base_config, "torch_dtype") and base_config.torch_dtype is not None:
|
| 102 |
+
data.setdefault("dtype", str(base_config.torch_dtype))
|
| 103 |
+
|
| 104 |
+
return cls.from_dict(data)
|
| 105 |
+
|
| 106 |
+
def get_text_config(self, *args, **kwargs) -> PretrainedConfig:
|
| 107 |
+
return self.text_config
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
DEFAULT_CONFIG = ColQwen3Config()
|
| 111 |
+
|
| 112 |
+
__all__ = ["ColQwen3Config", "DEFAULT_CONFIG"]
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2ba6432335afb9af877c74aa293d536bd2f4178d4f75b77c52732ceaeb331d4
|
| 3 |
+
size 3498416592
|
modeling_colqwen3.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
# Copyright 2025 The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
Modeling for ColQwen3 retrieval, aligned with the ColQwen2 reference implementation.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from typing import Optional
|
| 21 |
+
|
| 22 |
+
from torch import nn
|
| 23 |
+
from transformers import AutoModelForImageTextToText
|
| 24 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 25 |
+
from transformers.cache_utils import Cache
|
| 26 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 27 |
+
from transformers.utils import ModelOutput, auto_docstring, can_return_tuple, is_torch_available, logging
|
| 28 |
+
from transformers.models.qwen3_vl.configuration_qwen3_vl import Qwen3VLConfig
|
| 29 |
+
|
| 30 |
+
from .configuration_colqwen3 import ColQwen3Config
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if is_torch_available():
|
| 34 |
+
import torch
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@auto_docstring
|
| 40 |
+
class ColQwen3PreTrainedModel(PreTrainedModel):
|
| 41 |
+
config_class = ColQwen3Config
|
| 42 |
+
base_model_prefix = "model"
|
| 43 |
+
_no_split_modules = []
|
| 44 |
+
_supports_sdpa = True
|
| 45 |
+
_supports_flash_attn = True
|
| 46 |
+
_supports_flex_attn = True
|
| 47 |
+
|
| 48 |
+
def _init_weights(self, module):
|
| 49 |
+
std = (
|
| 50 |
+
self.config.initializer_range
|
| 51 |
+
if hasattr(self.config, "initializer_range")
|
| 52 |
+
else getattr(self.config.text_config, "initializer_range", 0.02)
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 56 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 57 |
+
if module.bias is not None:
|
| 58 |
+
module.bias.data.zero_()
|
| 59 |
+
elif isinstance(module, nn.Embedding):
|
| 60 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 61 |
+
if module.padding_idx is not None:
|
| 62 |
+
module.weight.data[module.padding_idx].zero_()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@dataclass
|
| 66 |
+
@auto_docstring(
|
| 67 |
+
custom_intro="""
|
| 68 |
+
Base class for ColQwen3 embeddings output.
|
| 69 |
+
"""
|
| 70 |
+
)
|
| 71 |
+
class ColQwen3ForRetrievalOutput(ModelOutput):
|
| 72 |
+
r"""
|
| 73 |
+
embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 74 |
+
The embeddings of the model.
|
| 75 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 76 |
+
It is a [`~cache_utils.Cache`] instance.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
loss: Optional[torch.FloatTensor] = None
|
| 80 |
+
embeddings: Optional[torch.Tensor] = None
|
| 81 |
+
past_key_values: Optional[Cache] = None
|
| 82 |
+
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
| 83 |
+
attentions: Optional[tuple[torch.FloatTensor]] = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
@auto_docstring(
|
| 87 |
+
custom_intro="""
|
| 88 |
+
ColQwen3 retrieval model that mirrors the ColQwen2 late-interaction pipeline while using a Qwen3-VL backbone.
|
| 89 |
+
"""
|
| 90 |
+
)
|
| 91 |
+
class ColQwen3(ColQwen3PreTrainedModel):
|
| 92 |
+
_checkpoint_conversion_mapping = {
|
| 93 |
+
# Legacy checkpoints saved from a bare Qwen3VLModel (no `vlm.` nesting).
|
| 94 |
+
r"^model\.visual": "vlm.model.visual",
|
| 95 |
+
r"^model\.language_model": "vlm.model.language_model",
|
| 96 |
+
r"^model\.": "vlm.model.",
|
| 97 |
+
r"^visual": "vlm.model.visual",
|
| 98 |
+
r"^language_model": "vlm.model.language_model",
|
| 99 |
+
r"^custom_text_proj": "embedding_proj_layer",
|
| 100 |
+
}
|
| 101 |
+
config_class = ColQwen3Config
|
| 102 |
+
model_type = ColQwen3Config.model_type
|
| 103 |
+
|
| 104 |
+
def __init__(
|
| 105 |
+
self,
|
| 106 |
+
config: ColQwen3Config,
|
| 107 |
+
attn_impl: Optional[str] = None,
|
| 108 |
+
mask_non_image_embeddings: bool = False,
|
| 109 |
+
):
|
| 110 |
+
"""
|
| 111 |
+
Args:
|
| 112 |
+
config (ColQwen3Config): Configuration carrying nested vision/text configs for the retrieval model.
|
| 113 |
+
attn_impl (Optional[str], optional): Attention implementation forwarded to the VLM (e.g., "flash_attention_2"). Defaults to None.
|
| 114 |
+
mask_non_image_embeddings (bool, optional): If True, zero out non-image embeddings after projection. Defaults to False.
|
| 115 |
+
"""
|
| 116 |
+
super().__init__(config)
|
| 117 |
+
self.config = config
|
| 118 |
+
|
| 119 |
+
vision_cfg = (
|
| 120 |
+
config.vision_config.to_dict() if isinstance(config.vision_config, PretrainedConfig) else config.vision_config
|
| 121 |
+
)
|
| 122 |
+
text_cfg = config.text_config.to_dict() if isinstance(config.text_config, PretrainedConfig) else config.text_config
|
| 123 |
+
|
| 124 |
+
vlm_config = Qwen3VLConfig(
|
| 125 |
+
text_config=text_cfg,
|
| 126 |
+
vision_config=vision_cfg,
|
| 127 |
+
image_token_id=getattr(config, "image_token_id", 151655),
|
| 128 |
+
video_token_id=getattr(config, "video_token_id", 151656),
|
| 129 |
+
vision_start_token_id=getattr(config, "vision_start_token_id", 151652),
|
| 130 |
+
vision_end_token_id=getattr(config, "vision_end_token_id", 151653),
|
| 131 |
+
tie_word_embeddings=getattr(config.text_config, "tie_word_embeddings", False),
|
| 132 |
+
)
|
| 133 |
+
self.vlm = AutoModelForImageTextToText.from_config(vlm_config)
|
| 134 |
+
|
| 135 |
+
self.embedding_dim = self.config.embed_dim
|
| 136 |
+
self.embedding_proj_layer = nn.Linear(
|
| 137 |
+
self.vlm.config.text_config.hidden_size,
|
| 138 |
+
self.embedding_dim,
|
| 139 |
+
)
|
| 140 |
+
self.padding_side = getattr(config, "padding_side", "left")
|
| 141 |
+
self.mask_non_image_embeddings = mask_non_image_embeddings
|
| 142 |
+
self._tied_weights_keys = [f"vlm.{k}" for k in (self.vlm._tied_weights_keys or [])]
|
| 143 |
+
|
| 144 |
+
self.post_init()
|
| 145 |
+
|
| 146 |
+
if attn_impl is not None and hasattr(self.vlm, "set_attn_implementation"):
|
| 147 |
+
self.vlm.set_attn_implementation(attn_impl)
|
| 148 |
+
|
| 149 |
+
@classmethod
|
| 150 |
+
def from_pretrained(cls, *args, config: Optional[ColQwen3Config] = None, **kwargs):
|
| 151 |
+
key_mapping = kwargs.pop("key_mapping", None)
|
| 152 |
+
if key_mapping is None:
|
| 153 |
+
key_mapping = getattr(cls, "_checkpoint_conversion_mapping", None)
|
| 154 |
+
|
| 155 |
+
return super().from_pretrained(*args, config=config, **kwargs, key_mapping=key_mapping)
|
| 156 |
+
|
| 157 |
+
@can_return_tuple
|
| 158 |
+
@auto_docstring
|
| 159 |
+
def forward(
|
| 160 |
+
self,
|
| 161 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 162 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 163 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 164 |
+
past_key_values: Optional[Cache] = None,
|
| 165 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 166 |
+
labels: Optional[torch.LongTensor] = None,
|
| 167 |
+
use_cache: Optional[bool] = None,
|
| 168 |
+
output_attentions: Optional[bool] = None,
|
| 169 |
+
output_hidden_states: Optional[bool] = None,
|
| 170 |
+
return_dict: Optional[bool] = None,
|
| 171 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 172 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 173 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 174 |
+
pixel_values_videos: Optional[torch.Tensor] = None,
|
| 175 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 176 |
+
) -> ColQwen3ForRetrievalOutput:
|
| 177 |
+
r"""
|
| 178 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 179 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 180 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 181 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 182 |
+
"""
|
| 183 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 184 |
+
output_hidden_states = (
|
| 185 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 186 |
+
)
|
| 187 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 188 |
+
|
| 189 |
+
vlm_output = self.vlm.model(
|
| 190 |
+
input_ids=input_ids,
|
| 191 |
+
position_ids=position_ids,
|
| 192 |
+
attention_mask=attention_mask,
|
| 193 |
+
past_key_values=past_key_values,
|
| 194 |
+
inputs_embeds=inputs_embeds,
|
| 195 |
+
pixel_values_videos=pixel_values_videos,
|
| 196 |
+
use_cache=use_cache,
|
| 197 |
+
output_attentions=output_attentions,
|
| 198 |
+
output_hidden_states=output_hidden_states,
|
| 199 |
+
return_dict=return_dict,
|
| 200 |
+
pixel_values=pixel_values,
|
| 201 |
+
image_grid_thw=image_grid_thw,
|
| 202 |
+
video_grid_thw=video_grid_thw,
|
| 203 |
+
cache_position=cache_position,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
vlm_hidden_states = vlm_output.hidden_states if output_hidden_states else None
|
| 207 |
+
|
| 208 |
+
last_hidden_states = vlm_output[0]
|
| 209 |
+
proj_dtype = self.embedding_proj_layer.weight.dtype
|
| 210 |
+
embeddings = self.embedding_proj_layer(last_hidden_states.to(proj_dtype))
|
| 211 |
+
|
| 212 |
+
denom = embeddings.norm(dim=-1, keepdim=True).clamp_min(torch.finfo(embeddings.dtype).eps)
|
| 213 |
+
embeddings = embeddings / denom
|
| 214 |
+
if attention_mask is not None:
|
| 215 |
+
embeddings = embeddings * attention_mask.unsqueeze(-1)
|
| 216 |
+
|
| 217 |
+
if pixel_values is not None and self.mask_non_image_embeddings:
|
| 218 |
+
image_mask = (input_ids == self.vlm.config.image_token_id).unsqueeze(-1)
|
| 219 |
+
embeddings = embeddings * image_mask
|
| 220 |
+
|
| 221 |
+
return ColQwen3ForRetrievalOutput(
|
| 222 |
+
embeddings=embeddings,
|
| 223 |
+
past_key_values=vlm_output.past_key_values,
|
| 224 |
+
hidden_states=vlm_hidden_states,
|
| 225 |
+
attentions=vlm_output.attentions,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
def get_input_embeddings(self):
|
| 229 |
+
return self.vlm.get_input_embeddings()
|
| 230 |
+
|
| 231 |
+
def set_input_embeddings(self, value):
|
| 232 |
+
self.vlm.set_input_embeddings(value)
|
| 233 |
+
|
| 234 |
+
def get_output_embeddings(self):
|
| 235 |
+
return self.vlm.get_output_embeddings()
|
| 236 |
+
|
| 237 |
+
def set_output_embeddings(self, new_embeddings):
|
| 238 |
+
self.vlm.set_output_embeddings(new_embeddings)
|
| 239 |
+
|
| 240 |
+
def tie_weights(self):
|
| 241 |
+
return self.vlm.tie_weights()
|
| 242 |
+
|
| 243 |
+
def resize_token_embeddings(
|
| 244 |
+
self,
|
| 245 |
+
new_num_tokens: Optional[int] = None,
|
| 246 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 247 |
+
mean_resizing: bool = True,
|
| 248 |
+
) -> nn.Embedding:
|
| 249 |
+
model_embeds = self.vlm.resize_token_embeddings(
|
| 250 |
+
new_num_tokens=new_num_tokens,
|
| 251 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 252 |
+
mean_resizing=mean_resizing,
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
self.vlm.config.text_config.vocab_size = model_embeds.num_embeddings
|
| 256 |
+
self.vlm.config.vocab_size = model_embeds.num_embeddings
|
| 257 |
+
return model_embeds
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
__all__ = ["ColQwen3", "ColQwen3PreTrainedModel", "ColQwen3ForRetrievalOutput"]
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_colqwen3.ColQwen3Processor"
|
| 4 |
+
},
|
| 5 |
+
"crop_size": null,
|
| 6 |
+
"data_format": "channels_first",
|
| 7 |
+
"default_to_square": true,
|
| 8 |
+
"device": null,
|
| 9 |
+
"disable_grouping": null,
|
| 10 |
+
"do_center_crop": null,
|
| 11 |
+
"do_convert_rgb": true,
|
| 12 |
+
"do_normalize": true,
|
| 13 |
+
"do_pad": null,
|
| 14 |
+
"do_rescale": true,
|
| 15 |
+
"do_resize": true,
|
| 16 |
+
"image_mean": [
|
| 17 |
+
0.5,
|
| 18 |
+
0.5,
|
| 19 |
+
0.5
|
| 20 |
+
],
|
| 21 |
+
"image_processor_type": "Qwen2VLImageProcessorFast",
|
| 22 |
+
"image_std": [
|
| 23 |
+
0.5,
|
| 24 |
+
0.5,
|
| 25 |
+
0.5
|
| 26 |
+
],
|
| 27 |
+
"input_data_format": null,
|
| 28 |
+
"max_pixels": 1310720,
|
| 29 |
+
"merge_size": 2,
|
| 30 |
+
"min_pixels": null,
|
| 31 |
+
"pad_size": null,
|
| 32 |
+
"patch_size": 16,
|
| 33 |
+
"processor_class": "ColQwen3Processor",
|
| 34 |
+
"resample": 3,
|
| 35 |
+
"rescale_factor": 0.00392156862745098,
|
| 36 |
+
"return_tensors": null,
|
| 37 |
+
"size": {
|
| 38 |
+
"longest_edge": 1310720,
|
| 39 |
+
"shortest_edge": 65536
|
| 40 |
+
},
|
| 41 |
+
"temporal_patch_size": 2
|
| 42 |
+
}
|
processing_colqwen3.py
ADDED
|
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
# Copyright 2025 The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
Processing utilities for ColQwen3, aligned with the ColQwen2 reference implementation.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import importlib
|
| 20 |
+
import numpy as np
|
| 21 |
+
from typing import Any, ClassVar, List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
from PIL import Image
|
| 25 |
+
from transformers import BatchEncoding
|
| 26 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 27 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
| 28 |
+
from transformers.processing_utils import AudioInput, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack, VideoInput
|
| 29 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 30 |
+
from transformers.utils import logging
|
| 31 |
+
|
| 32 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__)
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
from fast_plaid import search
|
| 38 |
+
except ImportError:
|
| 39 |
+
logger.info(
|
| 40 |
+
"FastPlaid is not installed.If you want to use it:Instal with `pip install --no-deps fast-plaid fastkmeans`"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def get_torch_device(device: str = "auto") -> str:
|
| 45 |
+
"""Resolve a torch device string with a simple auto mode."""
|
| 46 |
+
if device == "auto":
|
| 47 |
+
if torch.cuda.is_available():
|
| 48 |
+
device = "cuda:0"
|
| 49 |
+
elif torch.backends.mps.is_available(): # for Apple Silicon
|
| 50 |
+
device = "mps"
|
| 51 |
+
else:
|
| 52 |
+
device = "cpu"
|
| 53 |
+
return device
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class ColQwen3ProcessorKwargs(ProcessingKwargs, total=False):
|
| 57 |
+
_defaults = {
|
| 58 |
+
"text_kwargs": {
|
| 59 |
+
"padding": "longest",
|
| 60 |
+
},
|
| 61 |
+
"images_kwargs": {
|
| 62 |
+
"data_format": "channels_first",
|
| 63 |
+
"do_convert_rgb": True,
|
| 64 |
+
},
|
| 65 |
+
"videos_kwargs": {
|
| 66 |
+
"return_metadata": True,
|
| 67 |
+
"data_format": "channels_first",
|
| 68 |
+
"do_convert_rgb": True,
|
| 69 |
+
},
|
| 70 |
+
"common_kwargs": {"return_tensors": "pt"},
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class ColQwen3Processor(ProcessorMixin):
|
| 75 |
+
"""
|
| 76 |
+
Constructs a ColQwen3 processor which wraps a Qwen3VLProcessor with retrieval-specific helpers.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
attributes = ["image_processor", "tokenizer", "video_processor"]
|
| 80 |
+
image_processor_class = "AutoImageProcessor"
|
| 81 |
+
video_processor_class = "AutoVideoProcessor"
|
| 82 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
| 83 |
+
|
| 84 |
+
def __init__(
|
| 85 |
+
self,
|
| 86 |
+
image_processor=None,
|
| 87 |
+
tokenizer=None,
|
| 88 |
+
video_processor=None,
|
| 89 |
+
chat_template=None,
|
| 90 |
+
visual_prompt_prefix: Optional[str] = None,
|
| 91 |
+
visual_prompt_suffix: Optional[str] = None,
|
| 92 |
+
video_prompt_prefix: Optional[str] = None,
|
| 93 |
+
video_prompt_suffix: Optional[str] = None,
|
| 94 |
+
query_prefix: Optional[str] = None,
|
| 95 |
+
**kwargs,
|
| 96 |
+
):
|
| 97 |
+
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template, **kwargs)
|
| 98 |
+
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
| 99 |
+
self.image_token_id = (
|
| 100 |
+
tokenizer.image_token_id
|
| 101 |
+
if getattr(tokenizer, "image_token_id", None)
|
| 102 |
+
else tokenizer.convert_tokens_to_ids(self.image_token)
|
| 103 |
+
)
|
| 104 |
+
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
|
| 105 |
+
self.video_token_id = (
|
| 106 |
+
tokenizer.video_token_id
|
| 107 |
+
if getattr(tokenizer, "video_token_id", None)
|
| 108 |
+
else tokenizer.convert_tokens_to_ids(self.video_token)
|
| 109 |
+
)
|
| 110 |
+
self.vision_start_token = (
|
| 111 |
+
"<|vision_start|>" if not hasattr(tokenizer, "vision_start_token") else tokenizer.vision_start_token
|
| 112 |
+
)
|
| 113 |
+
self.vision_end_token = (
|
| 114 |
+
"<|vision_end|>" if not hasattr(tokenizer, "vision_end_token") else tokenizer.vision_end_token
|
| 115 |
+
)
|
| 116 |
+
self.vision_start_token_id = (
|
| 117 |
+
tokenizer.vision_start_token_id
|
| 118 |
+
if getattr(tokenizer, "vision_start_token_id", None)
|
| 119 |
+
else tokenizer.convert_tokens_to_ids(self.vision_start_token)
|
| 120 |
+
)
|
| 121 |
+
self.vision_end_token_id = (
|
| 122 |
+
tokenizer.vision_end_token_id
|
| 123 |
+
if getattr(tokenizer, "vision_end_token_id", None)
|
| 124 |
+
else tokenizer.convert_tokens_to_ids(self.vision_end_token)
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
if visual_prompt_prefix is None:
|
| 128 |
+
visual_prompt_prefix = (
|
| 129 |
+
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image."
|
| 130 |
+
)
|
| 131 |
+
self.visual_prompt_prefix = visual_prompt_prefix
|
| 132 |
+
if visual_prompt_suffix is None:
|
| 133 |
+
visual_prompt_suffix = "<|im_end|><|endoftext|>"
|
| 134 |
+
self.visual_prompt_suffix = visual_prompt_suffix
|
| 135 |
+
|
| 136 |
+
if video_prompt_prefix is None:
|
| 137 |
+
video_prompt_prefix = (
|
| 138 |
+
"<|im_start|>user\n<|vision_start|><|video_pad|><|vision_end|>Describe the video."
|
| 139 |
+
)
|
| 140 |
+
self.video_prompt_prefix = video_prompt_prefix
|
| 141 |
+
if video_prompt_suffix is None:
|
| 142 |
+
video_prompt_suffix = "<|im_end|><|endoftext|>"
|
| 143 |
+
self.video_prompt_suffix = video_prompt_suffix
|
| 144 |
+
|
| 145 |
+
if query_prefix is None:
|
| 146 |
+
query_prefix = ""
|
| 147 |
+
self.query_prefix = query_prefix
|
| 148 |
+
self.tokenizer.padding_side = "left"
|
| 149 |
+
|
| 150 |
+
@classmethod
|
| 151 |
+
def from_pretrained( # type: ignore[override]
|
| 152 |
+
cls,
|
| 153 |
+
*args: Any,
|
| 154 |
+
max_num_visual_tokens: int = 1280,
|
| 155 |
+
**kwargs: Any,
|
| 156 |
+
) -> "ColQwen3Processor":
|
| 157 |
+
instance = super().from_pretrained(
|
| 158 |
+
*args,
|
| 159 |
+
**kwargs,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
patch_size = getattr(instance.image_processor, "patch_size", None)
|
| 163 |
+
merge_size = getattr(instance.image_processor, "merge_size", None) or getattr(
|
| 164 |
+
instance.image_processor, "spatial_merge_size", None
|
| 165 |
+
)
|
| 166 |
+
if patch_size is None or merge_size is None:
|
| 167 |
+
raise ValueError("Qwen3VL image processor is missing `patch_size` or `merge_size`/`spatial_merge_size`.")
|
| 168 |
+
tile = patch_size * merge_size
|
| 169 |
+
instance.image_processor.max_pixels = max_num_visual_tokens * tile * tile
|
| 170 |
+
instance.image_processor.size["longest_edge"] = instance.image_processor.max_pixels
|
| 171 |
+
|
| 172 |
+
video_patch_size = getattr(instance.video_processor, "patch_size", None)
|
| 173 |
+
video_merge_size = getattr(instance.video_processor, "merge_size", None) or getattr(
|
| 174 |
+
instance.video_processor, "spatial_merge_size", None
|
| 175 |
+
)
|
| 176 |
+
video_temporal_patch_size = getattr(instance.video_processor, "temporal_patch_size", None)
|
| 177 |
+
if video_patch_size is None or video_merge_size is None or video_temporal_patch_size is None:
|
| 178 |
+
raise ValueError(
|
| 179 |
+
"Qwen3VL video processor is missing `patch_size`, `merge_size`/`spatial_merge_size`, or `temporal_patch_size`."
|
| 180 |
+
)
|
| 181 |
+
video_tile = video_patch_size * video_merge_size
|
| 182 |
+
# Include temporal patching so the visual token cap applies across space and time.
|
| 183 |
+
instance.video_processor.max_pixels = max_num_visual_tokens * video_tile * video_tile * video_temporal_patch_size
|
| 184 |
+
instance.video_processor.size["longest_edge"] = instance.video_processor.max_pixels
|
| 185 |
+
|
| 186 |
+
return instance
|
| 187 |
+
|
| 188 |
+
def __call__(
|
| 189 |
+
self,
|
| 190 |
+
images: Optional[ImageInput] = None,
|
| 191 |
+
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
|
| 192 |
+
audio: Optional[AudioInput] = None,
|
| 193 |
+
videos: Optional[VideoInput] = None,
|
| 194 |
+
**kwargs: Unpack[ColQwen3ProcessorKwargs],
|
| 195 |
+
) -> BatchFeature:
|
| 196 |
+
output_kwargs = self._merge_kwargs(
|
| 197 |
+
ColQwen3ProcessorKwargs,
|
| 198 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 199 |
+
**kwargs,
|
| 200 |
+
)
|
| 201 |
+
suffix = output_kwargs["text_kwargs"].pop("suffix", None)
|
| 202 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
| 203 |
+
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None)
|
| 204 |
+
|
| 205 |
+
if images is not None and videos is not None:
|
| 206 |
+
raise ValueError("Provide only one of `images` or `videos`, not both.")
|
| 207 |
+
|
| 208 |
+
# Normalize text inputs
|
| 209 |
+
text_list: list[str] = []
|
| 210 |
+
if text is not None:
|
| 211 |
+
if isinstance(text, str):
|
| 212 |
+
text_list = [text]
|
| 213 |
+
elif isinstance(text, list):
|
| 214 |
+
if len(text) == 0 or not all(isinstance(t, (str, type(None))) for t in text):
|
| 215 |
+
raise ValueError("Text must be a string or a list of strings.")
|
| 216 |
+
text_list = [t or "" for t in text]
|
| 217 |
+
else:
|
| 218 |
+
raise ValueError("Text must be a string or a list of strings")
|
| 219 |
+
|
| 220 |
+
# Normalize image inputs
|
| 221 |
+
image_list: Optional[list[Any]] = None
|
| 222 |
+
if images is not None:
|
| 223 |
+
raw_images = images if isinstance(images, list) else [images]
|
| 224 |
+
image_list = []
|
| 225 |
+
for idx, img_item in enumerate(raw_images):
|
| 226 |
+
if img_item is None:
|
| 227 |
+
image_list.append([])
|
| 228 |
+
elif is_valid_image(img_item):
|
| 229 |
+
image_list.append([img_item])
|
| 230 |
+
elif isinstance(img_item, list):
|
| 231 |
+
if not img_item:
|
| 232 |
+
image_list.append([])
|
| 233 |
+
continue
|
| 234 |
+
for sub_idx, sub_img in enumerate(img_item):
|
| 235 |
+
if not is_valid_image(sub_img):
|
| 236 |
+
raise ValueError(f"Image at position {idx}[{sub_idx}] is not a valid image.")
|
| 237 |
+
image_list.append(list(img_item))
|
| 238 |
+
else:
|
| 239 |
+
raise ValueError("images must be an image, list of images or list of list of images")
|
| 240 |
+
|
| 241 |
+
# Normalize video inputs
|
| 242 |
+
video_list: Optional[list[Any]] = None
|
| 243 |
+
if videos is not None:
|
| 244 |
+
raw_videos = list(videos) if isinstance(videos, (list, tuple)) else [videos]
|
| 245 |
+
video_list = []
|
| 246 |
+
for idx, vid_item in enumerate(raw_videos):
|
| 247 |
+
if vid_item is None:
|
| 248 |
+
video_list.append([])
|
| 249 |
+
elif isinstance(vid_item, list):
|
| 250 |
+
video_list.append(list(vid_item))
|
| 251 |
+
else:
|
| 252 |
+
video_list.append([vid_item])
|
| 253 |
+
|
| 254 |
+
if image_list is None and video_list is None and not text_list:
|
| 255 |
+
raise ValueError("Either text, images or videos must be provided")
|
| 256 |
+
|
| 257 |
+
# Align text length with provided vision inputs when needed
|
| 258 |
+
if image_list is not None:
|
| 259 |
+
if not text_list:
|
| 260 |
+
text_list = [""] * len(image_list)
|
| 261 |
+
elif len(text_list) == 1 and len(image_list) > 1:
|
| 262 |
+
text_list = text_list * len(image_list)
|
| 263 |
+
elif len(text_list) != len(image_list):
|
| 264 |
+
raise ValueError("When providing both images and text, their lengths must match.")
|
| 265 |
+
num_items = len(image_list)
|
| 266 |
+
elif video_list is not None:
|
| 267 |
+
if not text_list:
|
| 268 |
+
text_list = [""] * len(video_list)
|
| 269 |
+
elif len(text_list) == 1 and len(video_list) > 1:
|
| 270 |
+
text_list = text_list * len(video_list)
|
| 271 |
+
elif len(text_list) != len(video_list):
|
| 272 |
+
raise ValueError("When providing both videos and text, their lengths must match.")
|
| 273 |
+
num_items = len(video_list)
|
| 274 |
+
else:
|
| 275 |
+
num_items = len(text_list)
|
| 276 |
+
|
| 277 |
+
if num_items == 0:
|
| 278 |
+
raise ValueError("Either text, images or videos must be provided")
|
| 279 |
+
|
| 280 |
+
prompts: list[str] = []
|
| 281 |
+
query_suffix = suffix if suffix is not None else self.query_augmentation_token * 10
|
| 282 |
+
|
| 283 |
+
for idx in range(num_items):
|
| 284 |
+
extra_text = (text_list[idx] if idx < len(text_list) else "") or ""
|
| 285 |
+
extra_text = extra_text.strip()
|
| 286 |
+
has_image = image_list is not None and len(image_list[idx]) > 0
|
| 287 |
+
has_video = video_list is not None and len(video_list[idx]) > 0
|
| 288 |
+
if has_image and has_video:
|
| 289 |
+
raise ValueError("Provide only one of `images` or `videos` per item.")
|
| 290 |
+
|
| 291 |
+
if has_image:
|
| 292 |
+
prompt = (
|
| 293 |
+
f"{self.visual_prompt_prefix} {extra_text}{self.visual_prompt_suffix}"
|
| 294 |
+
if extra_text
|
| 295 |
+
else f"{self.visual_prompt_prefix}{self.visual_prompt_suffix}"
|
| 296 |
+
)
|
| 297 |
+
prompts.append(prompt)
|
| 298 |
+
elif has_video:
|
| 299 |
+
prompt = (
|
| 300 |
+
f"{self.video_prompt_prefix} {extra_text}{self.video_prompt_suffix}"
|
| 301 |
+
if extra_text
|
| 302 |
+
else f"{self.video_prompt_prefix}{self.video_prompt_suffix}"
|
| 303 |
+
)
|
| 304 |
+
prompts.append(prompt)
|
| 305 |
+
else:
|
| 306 |
+
prompt = self.query_prefix + extra_text + query_suffix
|
| 307 |
+
prompts.append(prompt)
|
| 308 |
+
|
| 309 |
+
# Process images (excluding empty placeholders)
|
| 310 |
+
image_inputs: dict[str, Any] = {}
|
| 311 |
+
image_grid_thw = None
|
| 312 |
+
if image_list is not None:
|
| 313 |
+
normalized_images: list[list[Image.Image]] = []
|
| 314 |
+
for idx, img_group in enumerate(image_list):
|
| 315 |
+
converted_list: list[Image.Image] = []
|
| 316 |
+
for sub_idx, sub_img in enumerate(img_group):
|
| 317 |
+
if not is_valid_image(sub_img):
|
| 318 |
+
raise ValueError(f"Image at position {idx}[{sub_idx}] is not a valid image.")
|
| 319 |
+
converted_list.append(sub_img.convert("RGB") if hasattr(sub_img, "convert") else sub_img)
|
| 320 |
+
normalized_images.append(converted_list)
|
| 321 |
+
|
| 322 |
+
image_inputs = self.image_processor(images=normalized_images, **output_kwargs["images_kwargs"])
|
| 323 |
+
image_grid_thw = image_inputs["image_grid_thw"]
|
| 324 |
+
|
| 325 |
+
# Process videos (excluding empty placeholders)
|
| 326 |
+
videos_inputs: dict[str, Any] = {}
|
| 327 |
+
video_grid_thw = None
|
| 328 |
+
video_metadata = None
|
| 329 |
+
if video_list is not None:
|
| 330 |
+
videos_inputs = self.video_processor(videos=video_list, **output_kwargs["videos_kwargs"])
|
| 331 |
+
video_grid_thw = videos_inputs["video_grid_thw"]
|
| 332 |
+
if "return_metadata" not in output_kwargs["videos_kwargs"]:
|
| 333 |
+
video_metadata = videos_inputs.pop("video_metadata")
|
| 334 |
+
else:
|
| 335 |
+
video_metadata = videos_inputs["video_metadata"]
|
| 336 |
+
|
| 337 |
+
# Expand prompts to match the number of visual tokens
|
| 338 |
+
text_prompts = prompts.copy()
|
| 339 |
+
if image_grid_thw is not None:
|
| 340 |
+
merge_size = getattr(self.image_processor, "merge_size", None) or getattr(
|
| 341 |
+
self.image_processor, "spatial_merge_size", None
|
| 342 |
+
)
|
| 343 |
+
if merge_size is None:
|
| 344 |
+
raise ValueError("Qwen3VL image processor is missing `merge_size`/`spatial_merge_size`.")
|
| 345 |
+
merge_length = merge_size**2
|
| 346 |
+
index = 0
|
| 347 |
+
for i in range(len(text_prompts)):
|
| 348 |
+
while self.image_token in text_prompts[i]:
|
| 349 |
+
if index >= len(image_grid_thw):
|
| 350 |
+
raise ValueError("Number of image tokens does not match provided images.")
|
| 351 |
+
num_image_tokens = image_grid_thw[index].prod() // merge_length
|
| 352 |
+
text_prompts[i] = text_prompts[i].replace(
|
| 353 |
+
self.image_token, "<|placeholder|>" * num_image_tokens, 1
|
| 354 |
+
)
|
| 355 |
+
index += 1
|
| 356 |
+
text_prompts[i] = text_prompts[i].replace("<|placeholder|>", self.image_token)
|
| 357 |
+
|
| 358 |
+
if video_grid_thw is not None:
|
| 359 |
+
merge_size = getattr(self.video_processor, "merge_size", None)
|
| 360 |
+
if merge_size is None:
|
| 361 |
+
raise ValueError("Qwen3VL video processor is missing `merge_size`.")
|
| 362 |
+
merge_length = merge_size**2
|
| 363 |
+
index = 0
|
| 364 |
+
for i in range(len(text_prompts)):
|
| 365 |
+
while self.video_token in text_prompts[i]:
|
| 366 |
+
if video_metadata is None or index >= len(video_metadata):
|
| 367 |
+
raise ValueError("Video metadata is required to build video prompts.")
|
| 368 |
+
metadata = video_metadata[index]
|
| 369 |
+
if metadata.fps is None:
|
| 370 |
+
logger.warning_once(
|
| 371 |
+
"Qwen3VL requires frame timestamps to construct prompts, but the `fps` of the input video could "
|
| 372 |
+
"not be inferred. Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results."
|
| 373 |
+
)
|
| 374 |
+
metadata.fps = 24 if metadata.fps is None else metadata.fps
|
| 375 |
+
|
| 376 |
+
curr_timestamp = self._calculate_timestamps(
|
| 377 |
+
metadata.frames_indices, metadata.fps, self.video_processor.merge_size
|
| 378 |
+
)
|
| 379 |
+
frame_seqlen = int(video_grid_thw[index][1:].prod().item() // merge_length)
|
| 380 |
+
video_placeholder = ""
|
| 381 |
+
for frame_idx in range(int(video_grid_thw[index][0])):
|
| 382 |
+
curr_time = curr_timestamp[frame_idx]
|
| 383 |
+
video_placeholder += f"<{curr_time:.1f} seconds>"
|
| 384 |
+
video_placeholder += (
|
| 385 |
+
self.vision_start_token + "<|placeholder|>" * frame_seqlen + self.vision_end_token
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
if f"{self.vision_start_token}{self.video_token}{self.vision_end_token}" in text_prompts[i]:
|
| 389 |
+
text_prompts[i] = text_prompts[i].replace(
|
| 390 |
+
f"{self.vision_start_token}{self.video_token}{self.vision_end_token}",
|
| 391 |
+
video_placeholder,
|
| 392 |
+
1,
|
| 393 |
+
)
|
| 394 |
+
else:
|
| 395 |
+
text_prompts[i] = text_prompts[i].replace(self.video_token, video_placeholder, 1)
|
| 396 |
+
index += 1
|
| 397 |
+
|
| 398 |
+
text_prompts[i] = text_prompts[i].replace("<|placeholder|>", self.video_token)
|
| 399 |
+
|
| 400 |
+
text_inputs = self.tokenizer(text_prompts, **output_kwargs["text_kwargs"])
|
| 401 |
+
self._check_special_mm_tokens(text_prompts, text_inputs, modalities=["image", "video"])
|
| 402 |
+
|
| 403 |
+
if return_mm_token_type_ids:
|
| 404 |
+
array_ids = np.array(text_inputs["input_ids"])
|
| 405 |
+
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
|
| 406 |
+
mm_token_type_ids[array_ids == self.image_token_id] = 1
|
| 407 |
+
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
|
| 408 |
+
|
| 409 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)
|
| 410 |
+
|
| 411 |
+
def process_images(
|
| 412 |
+
self,
|
| 413 |
+
images: List[Image.Image],
|
| 414 |
+
) -> Union[BatchFeature, BatchEncoding]:
|
| 415 |
+
images = [image.convert("RGB") for image in images]
|
| 416 |
+
return self(images=images, padding="longest", return_tensors="pt")
|
| 417 |
+
|
| 418 |
+
def process_texts(self, texts: List[str]) -> Union[BatchFeature, BatchEncoding]:
|
| 419 |
+
return self(text=texts, return_tensors="pt", padding="longest")
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
@staticmethod
|
| 423 |
+
def _split_batch_feature(batch_feature: BatchFeature) -> list[BatchFeature]:
|
| 424 |
+
# Split a batched BatchFeature into a list of per-item BatchFeatures.
|
| 425 |
+
length: Optional[int] = None
|
| 426 |
+
for value in batch_feature.values():
|
| 427 |
+
if hasattr(value, "__len__"):
|
| 428 |
+
try:
|
| 429 |
+
length = len(value)
|
| 430 |
+
except Exception:
|
| 431 |
+
continue
|
| 432 |
+
if length is not None:
|
| 433 |
+
break
|
| 434 |
+
|
| 435 |
+
if length is None:
|
| 436 |
+
return [batch_feature]
|
| 437 |
+
|
| 438 |
+
items: list[BatchFeature] = []
|
| 439 |
+
for idx in range(length):
|
| 440 |
+
data = {}
|
| 441 |
+
for key, value in batch_feature.items():
|
| 442 |
+
try:
|
| 443 |
+
data[key] = value[idx]
|
| 444 |
+
except Exception:
|
| 445 |
+
data[key] = value
|
| 446 |
+
items.append(BatchFeature(data=data))
|
| 447 |
+
return items
|
| 448 |
+
|
| 449 |
+
@staticmethod
|
| 450 |
+
def _merge_batch_features(features: list[BatchFeature]) -> BatchFeature:
|
| 451 |
+
if not features:
|
| 452 |
+
return BatchFeature()
|
| 453 |
+
|
| 454 |
+
all_keys = set()
|
| 455 |
+
for feat in features:
|
| 456 |
+
all_keys.update(feat.keys())
|
| 457 |
+
|
| 458 |
+
merged: dict[str, list[Any]] = {key: [] for key in all_keys}
|
| 459 |
+
for feat in features:
|
| 460 |
+
for key in all_keys:
|
| 461 |
+
merged[key].append(feat.get(key))
|
| 462 |
+
|
| 463 |
+
combined: dict[str, Any] = {}
|
| 464 |
+
for key, values in merged.items():
|
| 465 |
+
# Prefer stacking tensors so callers get batched tensors instead of lists
|
| 466 |
+
if all(isinstance(v, torch.Tensor) for v in values):
|
| 467 |
+
try:
|
| 468 |
+
combined[key] = torch.stack(values)
|
| 469 |
+
continue
|
| 470 |
+
except Exception:
|
| 471 |
+
# Fallback to list if shapes are incompatible for stacking
|
| 472 |
+
pass
|
| 473 |
+
combined[key] = values
|
| 474 |
+
|
| 475 |
+
return BatchFeature(data=combined)
|
| 476 |
+
|
| 477 |
+
def score_retrieval(
|
| 478 |
+
self,
|
| 479 |
+
qs: List[torch.Tensor],
|
| 480 |
+
ps: List[torch.Tensor],
|
| 481 |
+
score_batch_size: int = 128,
|
| 482 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 483 |
+
**kwargs,
|
| 484 |
+
) -> torch.Tensor:
|
| 485 |
+
return self.score_multi_vector(qs, ps, batch_size=score_batch_size, device=device, **kwargs)
|
| 486 |
+
|
| 487 |
+
@staticmethod
|
| 488 |
+
def score_single_vector(
|
| 489 |
+
qs: Union[torch.Tensor, List[torch.Tensor]],
|
| 490 |
+
ps: Union[torch.Tensor, List[torch.Tensor]],
|
| 491 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 492 |
+
) -> torch.Tensor:
|
| 493 |
+
"""
|
| 494 |
+
Compute the dot product score for the given single-vector query and passage embeddings.
|
| 495 |
+
"""
|
| 496 |
+
device = device or get_torch_device("auto")
|
| 497 |
+
|
| 498 |
+
if isinstance(qs, list) and isinstance(ps, list):
|
| 499 |
+
if len(qs) == 0:
|
| 500 |
+
raise ValueError("No queries provided")
|
| 501 |
+
if len(ps) == 0:
|
| 502 |
+
raise ValueError("No passages provided")
|
| 503 |
+
|
| 504 |
+
qs = torch.stack(qs).to(device)
|
| 505 |
+
ps = torch.stack(ps).to(device)
|
| 506 |
+
else:
|
| 507 |
+
qs = qs.to(device)
|
| 508 |
+
ps = ps.to(device)
|
| 509 |
+
|
| 510 |
+
scores = torch.einsum("bd,cd->bc", qs, ps)
|
| 511 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
| 512 |
+
|
| 513 |
+
scores = scores.to(torch.float32)
|
| 514 |
+
return scores
|
| 515 |
+
|
| 516 |
+
@staticmethod
|
| 517 |
+
def score_multi_vector(
|
| 518 |
+
qs: Union[torch.Tensor, List[torch.Tensor]],
|
| 519 |
+
ps: Union[torch.Tensor, List[torch.Tensor]],
|
| 520 |
+
batch_size: int = 128,
|
| 521 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 522 |
+
) -> torch.Tensor:
|
| 523 |
+
"""
|
| 524 |
+
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
|
| 525 |
+
query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
|
| 526 |
+
image of a document page.
|
| 527 |
+
|
| 528 |
+
Because the embedding tensors are multi-vector and can thus have different shapes, they
|
| 529 |
+
should be fed as:
|
| 530 |
+
(1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim)
|
| 531 |
+
(2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually
|
| 532 |
+
obtained by padding the list of tensors.
|
| 533 |
+
|
| 534 |
+
Args:
|
| 535 |
+
qs (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings.
|
| 536 |
+
ps (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings.
|
| 537 |
+
batch_size (`int`, *optional*): Batch size for computing scores.
|
| 538 |
+
device (`Union[str, torch.device]`, *optional*): Device to use for computation. If not
|
| 539 |
+
provided, uses `get_torch_device("auto")`.
|
| 540 |
+
|
| 541 |
+
Returns:
|
| 542 |
+
`torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score
|
| 543 |
+
tensor is saved on the "cpu" device.
|
| 544 |
+
"""
|
| 545 |
+
device = device or get_torch_device("auto")
|
| 546 |
+
|
| 547 |
+
if len(qs) == 0:
|
| 548 |
+
raise ValueError("No queries provided")
|
| 549 |
+
if len(ps) == 0:
|
| 550 |
+
raise ValueError("No passages provided")
|
| 551 |
+
|
| 552 |
+
scores_list: List[torch.Tensor] = []
|
| 553 |
+
|
| 554 |
+
for i in range(0, len(qs), batch_size):
|
| 555 |
+
scores_batch = []
|
| 556 |
+
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to(
|
| 557 |
+
device
|
| 558 |
+
)
|
| 559 |
+
for j in range(0, len(ps), batch_size):
|
| 560 |
+
ps_batch = torch.nn.utils.rnn.pad_sequence(
|
| 561 |
+
ps[j : j + batch_size], batch_first=True, padding_value=0
|
| 562 |
+
).to(device)
|
| 563 |
+
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
|
| 564 |
+
scores_batch = torch.cat(scores_batch, dim=1).cpu()
|
| 565 |
+
scores_list.append(scores_batch)
|
| 566 |
+
|
| 567 |
+
scores = torch.cat(scores_list, dim=0)
|
| 568 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
| 569 |
+
|
| 570 |
+
scores = scores.to(torch.float32)
|
| 571 |
+
return scores
|
| 572 |
+
|
| 573 |
+
@staticmethod
|
| 574 |
+
def get_topk_plaid(
|
| 575 |
+
qs: Union[torch.Tensor, List[torch.Tensor]],
|
| 576 |
+
plaid_index: "search.FastPlaid",
|
| 577 |
+
k: int = 10,
|
| 578 |
+
batch_size: int = 128,
|
| 579 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 580 |
+
) -> torch.Tensor:
|
| 581 |
+
"""
|
| 582 |
+
Experimental: Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
|
| 583 |
+
query embeddings (`qs`) and passage embeddings endoded in a plaid index. For ColPali, a passage is the
|
| 584 |
+
image of a document page.
|
| 585 |
+
"""
|
| 586 |
+
device = device or get_torch_device("auto")
|
| 587 |
+
|
| 588 |
+
if len(qs) == 0:
|
| 589 |
+
raise ValueError("No queries provided")
|
| 590 |
+
|
| 591 |
+
scores_list: List[torch.Tensor] = []
|
| 592 |
+
|
| 593 |
+
for i in range(0, len(qs), batch_size):
|
| 594 |
+
scores_batch = []
|
| 595 |
+
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to(
|
| 596 |
+
device
|
| 597 |
+
)
|
| 598 |
+
scores_batch = plaid_index.search(
|
| 599 |
+
queries_embeddings=qs_batch.to(torch.float32),
|
| 600 |
+
top_k=k,
|
| 601 |
+
)
|
| 602 |
+
scores_list.append(scores_batch)
|
| 603 |
+
|
| 604 |
+
return scores_list
|
| 605 |
+
|
| 606 |
+
@staticmethod
|
| 607 |
+
def create_plaid_index(
|
| 608 |
+
ps: Union[torch.Tensor, List[torch.Tensor]],
|
| 609 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 610 |
+
) -> torch.Tensor:
|
| 611 |
+
"""
|
| 612 |
+
Experimental: Create a FastPlaid index from the given passage embeddings.
|
| 613 |
+
Args:
|
| 614 |
+
ps (`Union[torch.Tensor, List[torch.Tensor]]`): Passage embeddings. Should be a list of tensors,
|
| 615 |
+
where each tensor is of shape (sequence_length_i, embedding_dim).
|
| 616 |
+
device (`Optional[Union[str, torch.device]]`, *optional*): Device to use for computation. If not
|
| 617 |
+
provided, uses `get_torch_device("auto")`.
|
| 618 |
+
"""
|
| 619 |
+
if not importlib.util.find_spec("fast_plaid"):
|
| 620 |
+
raise ImportError("FastPlaid is not installed. Please install it with `pip install fast-plaid`.")
|
| 621 |
+
|
| 622 |
+
fast_plaid_index = search.FastPlaid(index="index")
|
| 623 |
+
device = device or get_torch_device("auto")
|
| 624 |
+
fast_plaid_index.create(documents_embeddings=[d.to(device).to(torch.float32) for d in ps])
|
| 625 |
+
return fast_plaid_index
|
| 626 |
+
|
| 627 |
+
def get_n_patches(
|
| 628 |
+
self,
|
| 629 |
+
image_size: Tuple[int, int],
|
| 630 |
+
spatial_merge_size: int,
|
| 631 |
+
) -> Tuple[int, int]:
|
| 632 |
+
"""
|
| 633 |
+
Get the number of patches (n_patches_x, n_patches_y) that will be used to process an image of
|
| 634 |
+
size (height, width) with the given patch size.
|
| 635 |
+
|
| 636 |
+
The `spatial_merge_size` is the number of patches that will be merged spatially. It is stored in
|
| 637 |
+
as a `Qwen2VLForConditionalGeneration` attribute under `model.spatial_merge_size`.
|
| 638 |
+
"""
|
| 639 |
+
patch_size = self.image_processor.patch_size
|
| 640 |
+
|
| 641 |
+
height_new, width_new = smart_resize(
|
| 642 |
+
width=image_size[0],
|
| 643 |
+
height=image_size[1],
|
| 644 |
+
factor=patch_size * self.image_processor.merge_size,
|
| 645 |
+
min_pixels=self.image_processor.size["shortest_edge"],
|
| 646 |
+
max_pixels=self.image_processor.size["longest_edge"],
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
n_patches_x = width_new // patch_size // spatial_merge_size
|
| 650 |
+
n_patches_y = height_new // patch_size // spatial_merge_size
|
| 651 |
+
|
| 652 |
+
return n_patches_x, n_patches_y
|
| 653 |
+
|
| 654 |
+
def get_image_mask(self, batch_images: BatchFeature) -> torch.Tensor:
|
| 655 |
+
return batch_images.input_ids == self.image_token_id
|
| 656 |
+
|
| 657 |
+
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
|
| 658 |
+
vision_data = {}
|
| 659 |
+
if image_sizes is not None:
|
| 660 |
+
images_kwargs = ColQwen3ProcessorKwargs._defaults.get("images_kwargs", {})
|
| 661 |
+
images_kwargs.update(kwargs)
|
| 662 |
+
merge_size = images_kwargs.get("merge_size", None) or getattr(
|
| 663 |
+
self.image_processor, "merge_size", None
|
| 664 |
+
) or getattr(self.image_processor, "spatial_merge_size", None)
|
| 665 |
+
if merge_size is None:
|
| 666 |
+
raise ValueError("Qwen3VL image processor is missing `merge_size`/`spatial_merge_size`.")
|
| 667 |
+
|
| 668 |
+
num_image_patches = [
|
| 669 |
+
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
|
| 670 |
+
for image_size in image_sizes
|
| 671 |
+
]
|
| 672 |
+
num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
|
| 673 |
+
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
|
| 674 |
+
|
| 675 |
+
video_sizes = kwargs.pop("video_sizes", None)
|
| 676 |
+
if video_sizes is not None:
|
| 677 |
+
videos_kwargs = ColQwen3ProcessorKwargs._defaults.get("videos_kwargs", {})
|
| 678 |
+
videos_kwargs.update(kwargs)
|
| 679 |
+
merge_size = videos_kwargs.get("merge_size", None) or getattr(self.video_processor, "merge_size", None)
|
| 680 |
+
if merge_size is None:
|
| 681 |
+
raise ValueError("Qwen3VL video processor is missing `merge_size`.")
|
| 682 |
+
|
| 683 |
+
num_video_patches = [
|
| 684 |
+
self.video_processor.get_number_of_video_patches(*video_size, videos_kwargs) for video_size in video_sizes
|
| 685 |
+
]
|
| 686 |
+
num_video_tokens = [(num_patches // merge_size**2) for num_patches in num_video_patches]
|
| 687 |
+
vision_data.update({"num_video_tokens": num_video_tokens, "num_video_patches": num_video_patches})
|
| 688 |
+
|
| 689 |
+
return MultiModalData(**vision_data)
|
| 690 |
+
|
| 691 |
+
@property
|
| 692 |
+
def model_input_names(self) -> list[str]:
|
| 693 |
+
return [
|
| 694 |
+
"input_ids",
|
| 695 |
+
"attention_mask",
|
| 696 |
+
"pixel_values",
|
| 697 |
+
"image_grid_thw",
|
| 698 |
+
"pixel_values_videos",
|
| 699 |
+
"video_grid_thw",
|
| 700 |
+
]
|
| 701 |
+
|
| 702 |
+
@property
|
| 703 |
+
def query_augmentation_token(self) -> str:
|
| 704 |
+
return self.tokenizer.pad_token
|
| 705 |
+
|
| 706 |
+
def get_video_mask(self, batch_videos: BatchFeature) -> torch.Tensor:
|
| 707 |
+
return batch_videos.input_ids == self.video_token_id
|
| 708 |
+
|
| 709 |
+
def _calculate_timestamps(
|
| 710 |
+
self, indices: Union[list[int], np.ndarray], video_fps: float, merge_size: int = 2
|
| 711 |
+
) -> list[float]:
|
| 712 |
+
if not isinstance(indices, list):
|
| 713 |
+
indices = indices.tolist()
|
| 714 |
+
if len(indices) % merge_size != 0:
|
| 715 |
+
indices.extend(indices[-1] for _ in range(merge_size - len(indices) % merge_size))
|
| 716 |
+
timestamps = [idx / video_fps for idx in indices]
|
| 717 |
+
timestamps = [
|
| 718 |
+
(timestamps[i] + timestamps[i + merge_size - 1]) / 2 for i in range(0, len(timestamps), merge_size)
|
| 719 |
+
]
|
| 720 |
+
return timestamps
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
__all__ = ["ColQwen3Processor", "ColQwen3ProcessorKwargs"]
|
processor_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_colqwen3.ColQwen3Processor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "ColQwen3Processor",
|
| 6 |
+
"query_prefix": "",
|
| 7 |
+
"video_prompt_prefix": "<|im_start|>user\n<|vision_start|><|video_pad|><|vision_end|>Describe the video.",
|
| 8 |
+
"video_prompt_suffix": "<|im_end|><|endoftext|>",
|
| 9 |
+
"visual_prompt_prefix": "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.",
|
| 10 |
+
"visual_prompt_suffix": "<|im_end|><|endoftext|>"
|
| 11 |
+
}
|
quantization_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bits": 4,
|
| 3 |
+
"group_size": 128,
|
| 4 |
+
"sym": true,
|
| 5 |
+
"data_type": "int",
|
| 6 |
+
"seqlen": 1024,
|
| 7 |
+
"batch_size": 80,
|
| 8 |
+
"iters": 1000,
|
| 9 |
+
"nsamples": 560,
|
| 10 |
+
"autoround_version": "0.9.2",
|
| 11 |
+
"block_name_to_quantize": "vlm.model.language_model.layers",
|
| 12 |
+
"quant_method": "auto-round",
|
| 13 |
+
"packing_format": "auto_round:auto_gptq"
|
| 14 |
+
}
|
quantization_metadata.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"quantization_method": "auto-round",
|
| 3 |
+
"scheme": "W4A16",
|
| 4 |
+
"bits": 4,
|
| 5 |
+
"group_size": 128,
|
| 6 |
+
"sym": true,
|
| 7 |
+
"data_type": "int",
|
| 8 |
+
"act_bits": 16,
|
| 9 |
+
"iters": 1000,
|
| 10 |
+
"nsamples": 500,
|
| 11 |
+
"calibration_dataset": "NeelNanda/pile-10k (AutoRound default)",
|
| 12 |
+
"calibration_type": "text-only (language model only)",
|
| 13 |
+
"quantized_layers": 252,
|
| 14 |
+
"fp16_layers": 105,
|
| 15 |
+
"original_model": "TomoroAI/tomoro-colqwen3-embed-4b",
|
| 16 |
+
"note": "Vision encoder kept in FP16 (not quantized). Text-only calibration is appropriate since only language_model is quantized."
|
| 17 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"auto_map": {
|
| 230 |
+
"AutoProcessor": "processing_colqwen3.ColQwen3Processor"
|
| 231 |
+
},
|
| 232 |
+
"bos_token": null,
|
| 233 |
+
"clean_up_tokenization_spaces": false,
|
| 234 |
+
"eos_token": "<|im_end|>",
|
| 235 |
+
"errors": "replace",
|
| 236 |
+
"extra_special_tokens": {},
|
| 237 |
+
"model_max_length": 262144,
|
| 238 |
+
"pad_token": "<|endoftext|>",
|
| 239 |
+
"processor_class": "ColQwen3Processor",
|
| 240 |
+
"split_special_tokens": false,
|
| 241 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 242 |
+
"unk_token": null
|
| 243 |
+
}
|
video_preprocessor_config.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_colqwen3.ColQwen3Processor"
|
| 4 |
+
},
|
| 5 |
+
"crop_size": null,
|
| 6 |
+
"data_format": "channels_first",
|
| 7 |
+
"default_to_square": true,
|
| 8 |
+
"device": null,
|
| 9 |
+
"do_center_crop": null,
|
| 10 |
+
"do_convert_rgb": true,
|
| 11 |
+
"do_normalize": true,
|
| 12 |
+
"do_rescale": true,
|
| 13 |
+
"do_resize": true,
|
| 14 |
+
"do_sample_frames": true,
|
| 15 |
+
"fps": 2,
|
| 16 |
+
"image_mean": [
|
| 17 |
+
0.5,
|
| 18 |
+
0.5,
|
| 19 |
+
0.5
|
| 20 |
+
],
|
| 21 |
+
"image_std": [
|
| 22 |
+
0.5,
|
| 23 |
+
0.5,
|
| 24 |
+
0.5
|
| 25 |
+
],
|
| 26 |
+
"input_data_format": null,
|
| 27 |
+
"max_frames": 768,
|
| 28 |
+
"max_pixels": 2621440,
|
| 29 |
+
"merge_size": 2,
|
| 30 |
+
"min_frames": 4,
|
| 31 |
+
"num_frames": null,
|
| 32 |
+
"pad_size": null,
|
| 33 |
+
"patch_size": 16,
|
| 34 |
+
"processor_class": "ColQwen3Processor",
|
| 35 |
+
"resample": 3,
|
| 36 |
+
"rescale_factor": 0.00392156862745098,
|
| 37 |
+
"return_metadata": false,
|
| 38 |
+
"size": {
|
| 39 |
+
"longest_edge": 2621440,
|
| 40 |
+
"shortest_edge": 4096
|
| 41 |
+
},
|
| 42 |
+
"temporal_patch_size": 2,
|
| 43 |
+
"video_metadata": null,
|
| 44 |
+
"video_processor_type": "Qwen3VLVideoProcessor"
|
| 45 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|