import pandas as pd import pickle from sklearn.feature_extraction.text import TfidfVectorizer # 1. Load your 5000 samples print("👻 Loading Rosetta Stone Dataset...") try: df = pd.read_csv("rosetta_code_dataset.csv") print(f" -> Loaded {len(df)} examples.") except: print("Error: Could not find rosetta_code_dataset.csv") exit() # 2. Train the Brain (TF-IDF Vectorizer) # This converts English text ("fibonacci in java") into Math Numbers print("🧠 Training the Ghost Engine...") vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(df['prompt'].values.astype('U')) # 3. Save the Brain file # We save the Vectorizer (translator), Matrix (memory), and Code (answers) output_file = "ghost_brain.pkl" with open(output_file, "wb") as f: pickle.dump((vectorizer, tfidf_matrix, df['code'].values), f) print(f"✅ SUCCESS! Brain saved as '{output_file}'") print(f" Size: {os.path.getsize(output_file) / 1024:.2f} KB (Tiny!)") print(" Copy this file + ghost_coder.py to your USB stick.")