Update README.md
Browse files
README.md
CHANGED
|
@@ -14,15 +14,15 @@ license: apache-2.0
|
|
| 14 |
- **Model Optimizations:**
|
| 15 |
- **Weight quantization:** FP8
|
| 16 |
- **Activation quantization:** FP8
|
| 17 |
-
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-
|
| 18 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 19 |
-
- **Release Date:**
|
| 20 |
-
- **Version:** 1.
|
| 21 |
- **License(s):** [apache-2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)
|
| 22 |
- **Model Developers:** Neural Magic
|
| 23 |
|
| 24 |
Quantized version of [Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1).
|
| 25 |
-
It achieves an average score of
|
| 26 |
|
| 27 |
### Model Optimizations
|
| 28 |
|
|
@@ -88,7 +88,7 @@ examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt
|
|
| 88 |
|
| 89 |
quantize_config = BaseQuantizeConfig(
|
| 90 |
quant_method="fp8",
|
| 91 |
-
activation_scheme="static"
|
| 92 |
ignore_patterns=["re:.*lm_head", "re:.*block_sparse_moe.gate"],
|
| 93 |
)
|
| 94 |
|
|
@@ -105,7 +105,7 @@ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-
|
|
| 105 |
```
|
| 106 |
lm_eval \
|
| 107 |
--model vllm \
|
| 108 |
-
--model_args pretrained="neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8",dtype=auto,gpu_memory_utilization=0.
|
| 109 |
--tasks openllm \
|
| 110 |
--batch_size auto
|
| 111 |
```
|
|
@@ -127,71 +127,71 @@ lm_eval \
|
|
| 127 |
<tr>
|
| 128 |
<td>MMLU (5-shot)
|
| 129 |
</td>
|
| 130 |
-
<td>77.
|
| 131 |
</td>
|
| 132 |
-
<td>
|
| 133 |
</td>
|
| 134 |
-
<td>
|
| 135 |
</td>
|
| 136 |
</tr>
|
| 137 |
<tr>
|
| 138 |
<td>ARC Challenge (25-shot)
|
| 139 |
</td>
|
| 140 |
-
<td>
|
| 141 |
</td>
|
| 142 |
-
<td>
|
| 143 |
</td>
|
| 144 |
-
<td>99.
|
| 145 |
</td>
|
| 146 |
</tr>
|
| 147 |
<tr>
|
| 148 |
<td>GSM-8K (5-shot, strict-match)
|
| 149 |
</td>
|
| 150 |
-
<td>
|
| 151 |
</td>
|
| 152 |
-
<td>83.
|
| 153 |
</td>
|
| 154 |
-
<td>
|
| 155 |
</td>
|
| 156 |
</tr>
|
| 157 |
<tr>
|
| 158 |
<td>Hellaswag (10-shot)
|
| 159 |
</td>
|
| 160 |
-
<td>89.
|
| 161 |
</td>
|
| 162 |
-
<td>88.
|
| 163 |
</td>
|
| 164 |
-
<td>98.
|
| 165 |
</td>
|
| 166 |
</tr>
|
| 167 |
<tr>
|
| 168 |
<td>Winogrande (5-shot)
|
| 169 |
</td>
|
| 170 |
-
<td>85.
|
| 171 |
</td>
|
| 172 |
-
<td>84.
|
| 173 |
</td>
|
| 174 |
-
<td>
|
| 175 |
</td>
|
| 176 |
</tr>
|
| 177 |
<tr>
|
| 178 |
<td>TruthfulQA (0-shot)
|
| 179 |
</td>
|
| 180 |
-
<td>68.
|
| 181 |
</td>
|
| 182 |
-
<td>
|
| 183 |
</td>
|
| 184 |
-
<td>
|
| 185 |
</td>
|
| 186 |
</tr>
|
| 187 |
<tr>
|
| 188 |
<td><strong>Average</strong>
|
| 189 |
</td>
|
| 190 |
-
<td><strong>79.
|
| 191 |
</td>
|
| 192 |
-
<td><strong>
|
| 193 |
</td>
|
| 194 |
-
<td><strong>
|
| 195 |
</td>
|
| 196 |
</tr>
|
| 197 |
</table>
|
|
|
|
| 14 |
- **Model Optimizations:**
|
| 15 |
- **Weight quantization:** FP8
|
| 16 |
- **Activation quantization:** FP8
|
| 17 |
+
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
|
| 18 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 19 |
+
- **Release Date:** 8/11/2024
|
| 20 |
+
- **Version:** 1.1
|
| 21 |
- **License(s):** [apache-2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)
|
| 22 |
- **Model Developers:** Neural Magic
|
| 23 |
|
| 24 |
Quantized version of [Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1).
|
| 25 |
+
It achieves an average score of 79.04 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 79.93.
|
| 26 |
|
| 27 |
### Model Optimizations
|
| 28 |
|
|
|
|
| 88 |
|
| 89 |
quantize_config = BaseQuantizeConfig(
|
| 90 |
quant_method="fp8",
|
| 91 |
+
activation_scheme="static",
|
| 92 |
ignore_patterns=["re:.*lm_head", "re:.*block_sparse_moe.gate"],
|
| 93 |
)
|
| 94 |
|
|
|
|
| 105 |
```
|
| 106 |
lm_eval \
|
| 107 |
--model vllm \
|
| 108 |
+
--model_args pretrained="neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8",tensor_parallel_size=4,dtype=auto,gpu_memory_utilization=0.8,add_bos_token=True,max_model_len=4096 \
|
| 109 |
--tasks openllm \
|
| 110 |
--batch_size auto
|
| 111 |
```
|
|
|
|
| 127 |
<tr>
|
| 128 |
<td>MMLU (5-shot)
|
| 129 |
</td>
|
| 130 |
+
<td>77.71
|
| 131 |
</td>
|
| 132 |
+
<td>77.03
|
| 133 |
</td>
|
| 134 |
+
<td>99.12%
|
| 135 |
</td>
|
| 136 |
</tr>
|
| 137 |
<tr>
|
| 138 |
<td>ARC Challenge (25-shot)
|
| 139 |
</td>
|
| 140 |
+
<td>73.38
|
| 141 |
</td>
|
| 142 |
+
<td>73.04
|
| 143 |
</td>
|
| 144 |
+
<td>99.54%
|
| 145 |
</td>
|
| 146 |
</tr>
|
| 147 |
<tr>
|
| 148 |
<td>GSM-8K (5-shot, strict-match)
|
| 149 |
</td>
|
| 150 |
+
<td>84.99
|
| 151 |
</td>
|
| 152 |
+
<td>83.62
|
| 153 |
</td>
|
| 154 |
+
<td>98.39%
|
| 155 |
</td>
|
| 156 |
</tr>
|
| 157 |
<tr>
|
| 158 |
<td>Hellaswag (10-shot)
|
| 159 |
</td>
|
| 160 |
+
<td>89.24
|
| 161 |
</td>
|
| 162 |
+
<td>88.22
|
| 163 |
</td>
|
| 164 |
+
<td>98.86%
|
| 165 |
</td>
|
| 166 |
</tr>
|
| 167 |
<tr>
|
| 168 |
<td>Winogrande (5-shot)
|
| 169 |
</td>
|
| 170 |
+
<td>85.87
|
| 171 |
</td>
|
| 172 |
+
<td>84.93
|
| 173 |
</td>
|
| 174 |
+
<td>98.91%
|
| 175 |
</td>
|
| 176 |
</tr>
|
| 177 |
<tr>
|
| 178 |
<td>TruthfulQA (0-shot)
|
| 179 |
</td>
|
| 180 |
+
<td>68.41
|
| 181 |
</td>
|
| 182 |
+
<td>67.37
|
| 183 |
</td>
|
| 184 |
+
<td>98.48%
|
| 185 |
</td>
|
| 186 |
</tr>
|
| 187 |
<tr>
|
| 188 |
<td><strong>Average</strong>
|
| 189 |
</td>
|
| 190 |
+
<td><strong>79.93</strong>
|
| 191 |
</td>
|
| 192 |
+
<td><strong>79.04</strong>
|
| 193 |
</td>
|
| 194 |
+
<td><strong>98.88%</strong>
|
| 195 |
</td>
|
| 196 |
</tr>
|
| 197 |
</table>
|