Update configuration_motif.py
Browse files- configuration_motif.py +4 -10
configuration_motif.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
from transformers.modeling_rope_utils import rope_config_validation
|
| 3 |
from transformers.utils import logging
|
| 4 |
-
from typing import Optional
|
| 5 |
-
import math
|
| 6 |
|
| 7 |
logger = logging.get_logger(__name__)
|
| 8 |
|
|
@@ -13,11 +14,8 @@ class MotifConfig(PretrainedConfig):
|
|
| 13 |
Motif model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 14 |
with the defaults will yield a similar configuration to that of
|
| 15 |
Motif-102B [moreh/Motif-102B](https://huggingface.co/moreh/Motif-102B).
|
| 16 |
-
|
| 17 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 18 |
documentation from [`PretrainedConfig`] for more information.
|
| 19 |
-
|
| 20 |
-
|
| 21 |
Args:
|
| 22 |
vocab_size (`int`, *optional*, defaults to 151936):
|
| 23 |
Vocabulary size of the Motif model. Defines the number of different tokens that can be represented by the
|
|
@@ -97,16 +95,12 @@ class MotifConfig(PretrainedConfig):
|
|
| 97 |
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 98 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 99 |
The dropout ratio for the attention probabilities.
|
| 100 |
-
|
| 101 |
```python
|
| 102 |
>>> from transformers import MotifModel, MotifConfig
|
| 103 |
-
|
| 104 |
>>> # Initializing a Motif style configuration
|
| 105 |
>>> configuration = MotifConfig()
|
| 106 |
-
|
| 107 |
>>> # Initializing a model from the Motif-102B style configuration
|
| 108 |
>>> model = MotifModel(configuration)
|
| 109 |
-
|
| 110 |
>>> # Accessing the model configuration
|
| 111 |
>>> configuration = model.config
|
| 112 |
```"""
|
|
@@ -170,4 +164,4 @@ class MotifConfig(PretrainedConfig):
|
|
| 170 |
tie_word_embeddings=tie_word_embeddings,
|
| 171 |
**kwargs,
|
| 172 |
)
|
| 173 |
-
logger.info(f' kwargs : {kwargs}')
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
from transformers.modeling_rope_utils import rope_config_validation
|
| 6 |
from transformers.utils import logging
|
|
|
|
|
|
|
| 7 |
|
| 8 |
logger = logging.get_logger(__name__)
|
| 9 |
|
|
|
|
| 14 |
Motif model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 15 |
with the defaults will yield a similar configuration to that of
|
| 16 |
Motif-102B [moreh/Motif-102B](https://huggingface.co/moreh/Motif-102B).
|
|
|
|
| 17 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 18 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
|
| 19 |
Args:
|
| 20 |
vocab_size (`int`, *optional*, defaults to 151936):
|
| 21 |
Vocabulary size of the Motif model. Defines the number of different tokens that can be represented by the
|
|
|
|
| 95 |
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 96 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 97 |
The dropout ratio for the attention probabilities.
|
|
|
|
| 98 |
```python
|
| 99 |
>>> from transformers import MotifModel, MotifConfig
|
|
|
|
| 100 |
>>> # Initializing a Motif style configuration
|
| 101 |
>>> configuration = MotifConfig()
|
|
|
|
| 102 |
>>> # Initializing a model from the Motif-102B style configuration
|
| 103 |
>>> model = MotifModel(configuration)
|
|
|
|
| 104 |
>>> # Accessing the model configuration
|
| 105 |
>>> configuration = model.config
|
| 106 |
```"""
|
|
|
|
| 164 |
tie_word_embeddings=tie_word_embeddings,
|
| 165 |
**kwargs,
|
| 166 |
)
|
| 167 |
+
logger.info(f' kwargs : {kwargs}')
|