Update readme
Browse files
README.md
CHANGED
|
@@ -11,6 +11,29 @@ pipeline_tag: text-classification
|
|
| 11 |
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
| 12 |
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
## Usage
|
| 15 |
|
| 16 |
To use this model, please install BERTopic:
|
|
@@ -28,6 +51,12 @@ topic_model = BERTopic.load("MaartenGr/BERTopic_ArXiv")
|
|
| 28 |
topic_model.get_topic_info()
|
| 29 |
```
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
## Topic overview
|
| 32 |
|
| 33 |
* Number of topics: 107
|
|
@@ -148,6 +177,55 @@ topic_model.get_topic_info()
|
|
| 148 |
|
| 149 |
</details>
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
## Training hyperparameters
|
| 152 |
|
| 153 |
* calculate_probabilities: False
|
|
|
|
| 11 |
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
| 12 |
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
| 13 |
|
| 14 |
+
This pre-trained model demonstrates the use of several representation models that can be used within BERTopic. This model was trained on ~30000 ArXiv abstracts with the following topic representation methods (`bertopic.representation`):
|
| 15 |
+
|
| 16 |
+
* POS
|
| 17 |
+
* `PartOfSpeech("en_core_web_lg")`
|
| 18 |
+
* KeyBERTInspired
|
| 19 |
+
* `KeyBERTInspired()`
|
| 20 |
+
* MMR
|
| 21 |
+
* `MaximalMarginalRelevance(diversity=0.3)`
|
| 22 |
+
* KeyBERT + MMR
|
| 23 |
+
* `[KeyBERTInspired(), MaximalMarginalRelevance(diversity=0.3)]`
|
| 24 |
+
* OpenAI_Label
|
| 25 |
+
* `OpenAI(model="gpt-3.5-turbo", exponential_backoff=True, chat=True, diversity=0.1)`
|
| 26 |
+
* OpenAI_Summary
|
| 27 |
+
* `[KeyBERTInspired(), summarization_model]`
|
| 28 |
+
|
| 29 |
+
An example of the default c-TF-IDF representations:
|
| 30 |
+
|
| 31 |
+

|
| 32 |
+
|
| 33 |
+
An example of labels generated by ChatGPT (`gpt-3.5-turbo`):
|
| 34 |
+
|
| 35 |
+

|
| 36 |
+
|
| 37 |
## Usage
|
| 38 |
|
| 39 |
To use this model, please install BERTopic:
|
|
|
|
| 51 |
topic_model.get_topic_info()
|
| 52 |
```
|
| 53 |
|
| 54 |
+
To view all different topic representations (keywords, labels, summary, etc.) you can run the following:
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
topic_model.get_topic(1, full=True)
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
## Topic overview
|
| 61 |
|
| 62 |
* Number of topics: 107
|
|
|
|
| 177 |
|
| 178 |
</details>
|
| 179 |
|
| 180 |
+
## Training Procedure
|
| 181 |
+
|
| 182 |
+
The model was trained as follows:
|
| 183 |
+
|
| 184 |
+
```python
|
| 185 |
+
from cuml.manifold import UMAP
|
| 186 |
+
from cuml.cluster import HDBSCAN
|
| 187 |
+
from bertopic import BERTopic
|
| 188 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 189 |
+
from bertopic.representation import PartOfSpeech, KeyBERTInspired, MaximalMarginalRelevance, OpenAI
|
| 190 |
+
|
| 191 |
+
# Prepare sub-models
|
| 192 |
+
embedding_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
| 193 |
+
umap_model = UMAP(n_components=5, n_neighbors=50, random_state=42, metric="cosine", verbose=True)
|
| 194 |
+
hdbscan_model = HDBSCAN(min_samples=20, gen_min_span_tree=True, prediction_data=False, min_cluster_size=20, verbose=True)
|
| 195 |
+
vectorizer_model = CountVectorizer(stop_words="english", ngram_range=(1, 3), min_df=5)
|
| 196 |
+
|
| 197 |
+
# Summarization with ChatGPT
|
| 198 |
+
summarization_prompt = """
|
| 199 |
+
I have a topic that is described by the following keywords: [KEYWORDS]
|
| 200 |
+
In this topic, the following documents are a small but representative subset of all documents in the topic:
|
| 201 |
+
[DOCUMENTS]
|
| 202 |
+
|
| 203 |
+
Based on the information above, please give a description of this topic in the following format:
|
| 204 |
+
topic: <description>
|
| 205 |
+
"""
|
| 206 |
+
summarization_model = OpenAI(model="gpt-3.5-turbo", chat=True, prompt=summarization_prompt, nr_docs=5, exponential_backoff=True, diversity=0.1)
|
| 207 |
+
|
| 208 |
+
# Representation models
|
| 209 |
+
representation_models = {
|
| 210 |
+
"POS": PartOfSpeech("en_core_web_lg"),
|
| 211 |
+
"KeyBERTInspired": KeyBERTInspired(),
|
| 212 |
+
"MMR": MaximalMarginalRelevance(diversity=0.3),
|
| 213 |
+
"KeyBERT + MMR": [KeyBERTInspired(), MaximalMarginalRelevance(diversity=0.3)],
|
| 214 |
+
"OpenAI_Label": OpenAI(model="gpt-3.5-turbo", exponential_backoff=True, chat=True, diversity=0.1),
|
| 215 |
+
"OpenAI_Summary": [KeyBERTInspired(), summarization_model],
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
# Fit BERTopic
|
| 219 |
+
topic_model= BERTopic(
|
| 220 |
+
embedding_model=embedding_model,
|
| 221 |
+
umap_model=umap_model,
|
| 222 |
+
hdbscan_model=hdbscan_model,
|
| 223 |
+
vectorizer_model=vectorizer_model,
|
| 224 |
+
representation_model=representation_models,
|
| 225 |
+
verbose=True
|
| 226 |
+
).fit(docs)
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
## Training hyperparameters
|
| 230 |
|
| 231 |
* calculate_probabilities: False
|