File size: 28,489 Bytes
f20b100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
from autogen import GroupChatManager
import json
import re, os
import networkx as nx
from agents import create_parse_agents, create_graph_agents, language_summary_agents, calculation_summary_agents
from agents import is_termination_msg, is_termination_require, gpt4_config
from corrector_agents import get_corrector_agents
from refiner_agents import get_refiner_agents
from chats import InputParserGroupChat, RequirementGroupChat, LanguageGroupChat, CalculationGroupChat, SceneGraphGroupChat, SchemaGroupChat, LayoutCorrectorGroupChat, ObjectDeletionGroupChat, LayoutRefinerGroupChat
from utils import get_room_priors, extract_list_from_json
from utils import preprocess_scene_graph, build_graph, remove_unnecessary_edges, handle_under_prepositions, get_conflicts, get_size_conflicts, get_object_from_scene_graph
from utils import get_object_from_scene_graph, get_rotation, get_cluster_objects, clean_and_extract_edges
from utils import get_cluster_size
from utils import get_possible_positions, is_point_bbox, calculate_overlap, get_topological_ordering, place_object, get_depth, get_visualization
import openshape
import torch
import numpy as np
import transformers
import threading
import multiprocessing
import sys, shutil
import pandas as pd
from torch.nn import functional as F
import objaverse
import trimesh
import certifi
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
os.environ['SSL_CERT_FILE'] = certifi.where()
class Generator:
def __init__(self, layout_elements=['south_wall', 'north_wall', 'west_wall', 'east_wall', 'middle of the room', 'ceiling'], room_dimensions=[5.0, 5.0, 3.0], result_file="./results/layout_w_cot.json"):
self.room_dimensions = room_dimensions
self.room_priors = get_room_priors(self.room_dimensions)
self.layout_elements = list(layout_elements)
self.result_file = result_file
self.scene_graph = None
self.cot_info = {}
os.environ["TOKENIZERS_PARALLELISM"] = "false"
meta = json.load(
open('./embeddings/objaverse_meta.json')
)
self.meta = {x['u']: x for x in meta['entries']}
deser = torch.load('./embeddings/objaverse.pt')
self.us = deser['us']
self.feats = deser['feats']
local_assets = pd.read_excel("./assets/copy.xlsx", skiprows=2)
captions = local_assets["caption_clip"].tolist()
file_paths = []
bbx_values = []
for index, row in local_assets.iterrows():
model_name = row['name_en']
model_path = os.path.join("./assets/lvm_2032fbx", f"{model_name}.fbx")
file_paths.append(model_path)
bbx_values.append(row['bbx'])
self.caption_to_file = [
{
"caption": caption,
"file_path": path,
"bbx": bbx
}
for caption, path, bbx in zip(captions, file_paths, bbx_values)
]
self.clip_model, self.clip_prep = transformers.CLIPModel.from_pretrained(
"./ckpts/CLIP-ViT-bigG-14-laion2B-39B-b160k",
low_cpu_mem_usage=True, torch_dtype=torch.float16,
offload_state_dict=True,
), transformers.CLIPProcessor.from_pretrained("./ckpts/CLIP-ViT-bigG-14-laion2B-39B-b160k")
self.local_embeddings = torch.load("./embeddings/local.pt")
def parse_input(self, user_input, max_number_of_objects):
self.user_input = user_input
self.max_number_of_objects = max_number_of_objects
user_proxy, requirements_analyzer, substructure_analyzer, substructure_analyzer_checker, interior_designer, designer_checker = create_parse_agents(self.max_number_of_objects)
init_groupchat = RequirementGroupChat(
agents=[user_proxy, requirements_analyzer, substructure_analyzer, interior_designer, designer_checker],
messages=[],
max_round=16
)
manager = GroupChatManager(groupchat=init_groupchat, llm_config=gpt4_config, is_termination_msg=is_termination_require)
user_proxy.initiate_chat(
manager,
message=f"""
The room has the size {self.room_dimensions[0]}m x {self.room_dimensions[1]}m x {self.room_dimensions[2]}m
User Input (in triple backquotes):
```
{self.user_input}
```
Room layout elements in the room (in triple backquotes):
```
['south_wall', 'north_wall', 'west_wall', 'east_wall', 'middle of the room', 'ceiling']
```
json
""",
)
# correction = init_groupchat.messages[-2]
# pattern = r'```json\s*([^`]+)\s*```'
# match = re.search(pattern, correction["content"], re.DOTALL).group(1)
# self.designer_response = json.loads(match)
self.designer_response = json.loads(init_groupchat.messages[-2]["content"])
self.cot_info["parse_cot"] = self.designer_response["chain_of_thought"]
# reason_designer, blocks_designer = extract_list_from_json(designer_response, 'Reason'), extract_list_from_json(designer_response, 'Objects')
# self.reason_designer = reason_designer
def retrieve_local_assets(self):
print("Locking...")
sys.clip_move_lock = threading.Lock()
print("Locked.")
if torch.cuda.is_available():
with sys.clip_move_lock:
self.clip_model.cuda()
torch.set_grad_enabled(False)
def preprocess(input_string):
wo_numericals = re.sub(r'\d', '', input_string)
output = wo_numericals.replace("_", " ")
return output
def retrieve_local(query_embedding, top=1, sim_th=0.5):
query_embedding = F.normalize(query_embedding.detach().cpu(), dim=-1).squeeze()
sims = []
for embedding in torch.split(self.local_embeddings, 10240):
sims.append(query_embedding @ F.normalize(embedding.float(), dim=-1).T)
sims = torch.cat(sims)
sims, indices = torch.sort(sims, descending=True)
results = []
for i, sim in zip(indices, sims):
if sim > sim_th:
results.append({
"caption": self.caption_to_file[i]["caption"],
"file_path": self.caption_to_file[i]["file_path"],
"bbx": self.caption_to_file[i]["bbx"],
"sim": sim.item()
})
if len(results) >= top:
break
return results
def retrieve(embedding, top=1, sim_th=0.1, filter_fn=None):
sims = []
embedding = F.normalize(embedding.detach().cpu(), dim=-1).squeeze()
for chunk in torch.split(self.feats, 10240):
sims.append(embedding @ F.normalize(chunk.float(), dim=-1).T)
sims = torch.cat(sims)
sims, idx = torch.sort(sims, descending=True)
sim_mask = sims > sim_th
sims = sims[sim_mask]
idx = idx[sim_mask]
results = []
for i, sim in zip(idx, sims):
if self.us[i] in self.meta:
if filter_fn is None or filter_fn(self.meta[self.us[i]]):
results.append(dict(self.meta[self.us[i]], sim=sim))
if len(results) >= top:
break
return results
def get_filter_fn():
face_min = 0
face_max = 34985808
anim_min = 0
anim_max = 563
anim_n = not (anim_min > 0 or anim_max < 563)
face_n = not (face_min > 0 or face_max < 34985808)
filter_fn = lambda x: (
(anim_n or anim_min <= x['anims'] <= anim_max)
and (face_n or face_min <= x['faces'] <= face_max)
)
return filter_fn
def get_model_dimensions(file_path):
mesh = trimesh.load(file_path)
bounding_box = mesh.bounding_box.extents
length = bounding_box[0] / 100
width = bounding_box[2] / 100
height = bounding_box[1] / 100
return length, width, height
# Extract objects from designer_response
objects = extract_list_from_json(self.designer_response, 'objects')
for obj in objects:
text = preprocess("A high-poly " + obj['object_id']) + f" with {obj['material']} material and in {obj['style']} style, high quality"
device = self.clip_model.device
tn = self.clip_prep(
text=[text], return_tensors='pt', truncation=True, max_length=76
).to(device)
enc = self.clip_model.get_text_features(**tn).float().cpu()
retrieved_local = retrieve_local(enc, top=1, sim_th=0.5)
if retrieved_local:
retrieved_obj = retrieved_local[0]
print("Retrieved object: ", retrieved_obj["file_path"])
# destination_folder = os.path.join(os.getcwd(), f"Assets/")
# if not os.path.exists(destination_folder):
# os.makedirs(destination_folder)
source_file = retrieved_obj["file_path"]
file_extension = os.path.splitext(source_file)[1]
# destination_path = os.path.join(destination_folder, f"{obj['object_id']}{file_extension}")
# shutil.copy(source_file, destination_path)
# print(f"File moved to {destination_path}")
if retrieved_obj["sim"] > 0.5:
length, width, height = map(float, retrieved_obj["bbx"].split(','))
obj['bounding_box_size'] = {'Length': length, 'Width': width, 'Height': height}
else:
retrieved_obj = retrieve(enc, top=1, sim_th=0.1, filter_fn=get_filter_fn())[0]
print(f"Retrieved object from Objaverse: {retrieved_obj['u']}")
processes = multiprocessing.cpu_count()
objaverse_objects = objaverse.load_objects(
uids=[retrieved_obj['u']],
download_processes=processes
)
# destination_folder = os.path.join(os.getcwd(), f"Assets/")
# if not os.path.exists(destination_folder):
# os.makedirs(destination_folder)
for item_id, file_path in objaverse_objects.items():
# destination_path = f"{destination_folder}{obj['object_id']}.glb"
# shutil.move(file_path, destination_path)
# print(f"File {item_id} moved from {file_path} to {destination_path}")
if retrieved_obj["sim"] > 0.18:
length, width, height = get_model_dimensions(file_path)
obj['bounding_box_size'] = {'Length': length, 'Width': width, 'Height': height}
self.designer_response['objects'] = objects
print(self.designer_response)
def create_scene_graph(self):
cot_data_1 = []
user_proxy, interior_architect, schema_engineer = create_graph_agents()
scene_graph_groupchat = SceneGraphGroupChat(
agents =[user_proxy, interior_architect, schema_engineer],
messages=[],
max_round=10
)
cot_data, json_info, json_data = {}, {}, {}
blocks_designer = extract_list_from_json(self.designer_response, 'objects')
for d_block in blocks_designer:
object_id = d_block["object_id"]
prompt = str(d_block)
manager_scene_graph = GroupChatManager(groupchat=scene_graph_groupchat,
llm_config=gpt4_config,
human_input_mode="NEVER",
is_termination_msg=is_termination_msg)
user_proxy.initiate_chat(
manager_scene_graph,
message=f"""
The room has the size {self.room_dimensions[0]}m x {self.room_dimensions[1]}m x {self.room_dimensions[2]}m
User Input (in triple backquotes):
```
{self.user_input}
```
Room layout elements in the room (in triple backquotes):
```
['south_wall', 'north_wall', 'west_wall', 'east_wall', 'middle of the floor', 'ceiling']
```
Previously placed objects in the room (in triple backquotes):
```
{json_data}
```
Object to be placed (in triple backticks):
```
{prompt}
```
""",
)
if not json_info:
json_info["objects_in_room"] = []
json_info["objects_in_room"] += json.loads(scene_graph_groupchat.messages[-2]["content"])["objects_in_room"]
object_data = json.loads(scene_graph_groupchat.messages[-2]["content"])["objects_in_room"][0]
if 'new_object_id' in object_data:
del object_data['new_object_id']
json_data[str(object_id)] = object_data
if str(object_id) not in cot_data:
cot_data[str(object_id)] = []
indices_to_collect = list(range(1, len(scene_graph_groupchat.messages), 2))
for idx in indices_to_collect:
cot_data[str(object_id)].append(json.loads(scene_graph_groupchat.messages[idx]["content"])["chain_of_thought"])
user_proxy.reset(), interior_architect.reset(), schema_engineer.reset(), scene_graph_groupchat.reset()
self.cot_info["scene_graph_cot"] = cot_data
self.scene_graph = json_info
self.conflict_data = []
# TODO: Modify
scene_graph = preprocess_scene_graph(json_info["objects_in_room"], cot_data_1)
G = build_graph(scene_graph)
G = remove_unnecessary_edges(G, cot_data_1)
G, scene_graph = handle_under_prepositions(G, scene_graph, cot_data_1)
conflicts = get_conflicts(G, scene_graph, cot_data_1)
print("-------------------CONFLICTS-------------------")
for conflict in conflicts:
print(conflict)
print("\n\n")
self.conflict_data.append(conflicts)
user_proxy, spatial_corrector_agent, json_schema_debugger, object_deletion_agent = get_corrector_agents()
while len(conflicts) > 0:
spatial_corrector_agent.reset(), json_schema_debugger.reset()
groupchat = LayoutCorrectorGroupChat(
agents =[user_proxy, spatial_corrector_agent, json_schema_debugger],
messages=[],
max_round=15
)
manager = GroupChatManager(groupchat=groupchat, llm_config=gpt4_config, is_termination_msg=is_termination_msg)
user_proxy.initiate_chat(
manager,
message=f"""
{conflicts[0]}
""",
)
correction = groupchat.messages[-2]
pattern = r'```json\s*([^`]+)\s*```' # Match the json object
match = re.search(pattern, correction["content"], re.DOTALL).group(1)
correction_json = json.loads(match)
self.conflict_data.append(correction_json)
corr_obj = get_object_from_scene_graph(correction_json["corrected_object"]["new_object_id"], scene_graph)
corr_obj["is_on_the_floor"] = correction_json["corrected_object"]["is_on_the_floor"]
corr_obj["facing"] = correction_json["corrected_object"]["facing"]
corr_obj["placement"] = correction_json["corrected_object"]["placement"]
G = build_graph(scene_graph)
conflicts = get_conflicts(G, scene_graph, cot_data_1)
size_conflicts = get_size_conflicts(G, scene_graph, cot_data_1, self.user_input, self.room_priors)
print("-------------------SIZE CONFLICTS-------------------")
for conflict in size_conflicts:
print(conflict)
print("\n\n")
self.conflict_data.append(size_conflicts)
while len(size_conflicts) > 0:
object_deletion_agent.reset()
groupchat = ObjectDeletionGroupChat(
agents =[user_proxy, object_deletion_agent],
messages=[],
max_round=2
)
manager = GroupChatManager(groupchat=groupchat, llm_config=gpt4_config, is_termination_msg=is_termination_msg)
user_proxy.initiate_chat(
manager,
message=f"""
{size_conflicts[0]}
""",
)
correction = groupchat.messages[-1]
correction_json = json.loads(correction["content"])
object_to_delete = correction_json["object_to_delete"]
descendants = nx.descendants(G, object_to_delete)
objs_to_delete = descendants.union({object_to_delete})
print("Objs to Delete: ", objs_to_delete)
self.conflict_data.append(f"Objs to Delete: {objs_to_delete}")
scene_graph = [x for x in scene_graph if x["new_object_id"] not in objs_to_delete]
for obj in objs_to_delete:
G.remove_node(obj)
size_conflicts = get_size_conflicts(G, scene_graph, cot_data_1, self.user_input, self.room_priors)
self.scene_graph["objects_in_room"] = scene_graph
def summary_language(self):
user_proxy, language_architect = language_summary_agents()
groupchat = LanguageGroupChat(
agents=[user_proxy, language_architect],
messages=[],
max_round=2
)
manager = GroupChatManager(groupchat=groupchat, llm_config=gpt4_config, is_termination_msg=is_termination_msg)
user_proxy.initiate_chat(
manager,
message=f"""
The room has the size {self.room_dimensions[0]}m x {self.room_dimensions[1]}m x {self.room_dimensions[2]}m
User Input (in triple backquotes):
```
**chain of thought for requirements_analyzer, substructure_analyzer and interior_designer**
{self.cot_info["parse_cot"]}
```
**chain of thought for object placement**
{self.cot_info["scene_graph_cot"]}
```
**conflict data**
{self.conflict_data}
```
**scene graph**
{self.scene_graph}
```
Room layout elements in the room (in triple backquotes):
```
['south_wall', 'north_wall', 'west_wall', 'east_wall', 'middle of the room', 'ceiling']
```
json
""",
)
self.language_sum = groupchat.messages[-1]["content"]
def create_layout(self, debug=False):
# self.scene_graph = {'objects_in_room': [{'new_object_id': 'pool_table_1', 'style': 'modern', 'material': 'wood', 'functionality': 'playing', 'color': 'black', 'size_in_meters': {'length': 2.84, 'width': 1.42, 'height': 0.8}, 'is_on_the_floor': True, 'facing': 'north_wall', 'placement': {'room_layout_elements': [{'layout_element_id': 'middle of the room', 'preposition': 'on'}], 'objects_in_room': []}}, {'new_object_id': 'overhead_light_1', 'style': 'modern', 'material': 'metal', 'functionality': 'lighting', 'color': 'silver', 'size_in_meters': {'length': 1.0, 'width': 0.3, 'height': 0.3}, 'is_on_the_floor': False, 'facing': 'downwards', 'placement': {'room_layout_elements': [{'layout_element_id': 'ceiling', 'preposition': 'on'}], 'objects_in_room': [{'object_id': 'pool_table_1', 'preposition': 'above', 'is_adjacent': False}]}}, {'new_object_id': 'bar_stool_1', 'style': 'modern', 'material': 'metal', 'functionality': 'seating', 'color': 'black', 'size_in_meters': {'length': 0.45, 'width': 0.45, 'height': 0.75}, 'is_on_the_floor': True, 'facing': 'north_wall', 'placement': {'room_layout_elements': [], 'objects_in_room': [{'object_id': 'pool_table_1', 'preposition': 'right of', 'is_adjacent': False}]}}, {'new_object_id': 'bar_stool_2', 'style': 'modern', 'material': 'metal', 'functionality': 'seating', 'color': 'black', 'size_in_meters': {'length': 0.45, 'width': 0.45, 'height': 0.75}, 'is_on_the_floor': True, 'facing': 'north_wall', 'placement': {'room_layout_elements': [], 'objects_in_room': [{'object_id': 'pool_table_1', 'preposition': 'left of', 'is_adjacent': False}]}}, {'new_object_id': 'rug_1', 'style': 'modern', 'material': 'fabric', 'functionality': 'decor', 'color': 'grey', 'size_in_meters': {'length': 3.0, 'width': 2.0, 'height': 0.01}, 'is_on_the_floor': True, 'facing': 'north_wall', 'placement': {'room_layout_elements': [{'layout_element_id': 'middle of the room', 'preposition': 'on'}], 'objects_in_room': [{'object_id': 'pool_table_1', 'preposition': 'under', 'is_adjacent': False}]}}, {'new_object_id': 'scoreboard_1', 'style': 'modern', 'material': 'electronic', 'functionality': 'score keeping', 'color': 'black', 'size_in_meters': {'length': 0.6, 'width': 0.02, 'height': 0.4}, 'is_on_the_floor': False, 'facing': 'north_wall', 'placement': {'room_layout_elements': [{'layout_element_id': 'west_wall', 'preposition': 'on'}], 'objects_in_room': []}}]}
cot_data = []
G = build_graph(self.scene_graph["objects_in_room"])
nodes = G.nodes()
cot_data.append("Calculate constraint area for non-layout objects only.")
for node in nodes:
if node not in self.layout_elements:
cluster_size, _ = get_cluster_size(node, G, self.scene_graph["objects_in_room"], cot_data)
node_obj = get_object_from_scene_graph(node, self.scene_graph["objects_in_room"])
cluster_size = {"x_neg" : cluster_size["left of"], "x_pos" : cluster_size["right of"], "y_neg" : cluster_size["behind"], "y_pos" : cluster_size["in front"]}
node_obj["cluster"] = {"constraint_area" : cluster_size}
cot_data.append(f"The constraint area for {node} is {cluster_size}.")
self.scene_graph = self.scene_graph["objects_in_room"] + self.room_priors
prior_ids = ["south_wall", "north_wall", "east_wall", "west_wall", "ceiling", "middle of the room"]
point_bbox = dict.fromkeys([item["new_object_id"] for item in self.scene_graph], False)
# Place the objects that have an absolute position
for item in self.scene_graph:
if item["new_object_id"] in prior_ids:
continue
possible_pos = get_possible_positions(item["new_object_id"], self.scene_graph, self.room_dimensions, cot_data)
# Determine the overlap based on the possible positions
overlap = None
if len(possible_pos) == 1:
overlap = possible_pos[0]
elif len(possible_pos) > 1:
overlap = possible_pos[0]
for pos in possible_pos[1:]:
overlap = calculate_overlap(overlap, pos)
# If the overlap is a point bbox, assign the position
if overlap is not None and is_point_bbox(overlap) and len(possible_pos) > 0:
item["position"] = {"x" : overlap[0], "y" : overlap[2], "z" : overlap[4]}
point_bbox[item["new_object_id"]] = True
scene_graph_wo_layout = [item for item in self.scene_graph if item["new_object_id"] not in self.layout_elements]
depth_scene_graph = get_depth(scene_graph_wo_layout)
max_depth = max(depth_scene_graph.values())
topological_order = get_topological_ordering(scene_graph_wo_layout)
topological_order = [item for item in topological_order if item not in self.layout_elements]
d = 1
count = 0
while d <= max_depth and count < 20:
count += 1
error_flag = False
nodes = [node for node in topological_order if depth_scene_graph[node] == d]
if debug:
print(f"Nodes at depth {d}: ", nodes)
errors = {}
cot_data.append(f"Place objects: {[node for node in nodes]}.")
for node in nodes:
if point_bbox[node]:
continue
obj = next(item for item in scene_graph_wo_layout if item["new_object_id"] == node)
cot_data.append(f"Place the object {obj['new_object_id']} at the depth {d}.")
errors = place_object(obj, self.scene_graph, self.room_dimensions, cot_data, errors={}, debug=debug)
if debug:
print(f"Errors for {obj['new_object_id']}: ", errors)
# cot_data.append(f"Check whether there are any errors in placing {obj['new_object_id']}.")
if errors:
if d > 1:
d -= 1
cot_data.append(f"Errors occur for {obj['new_object_id']}: {errors}. Reduce depth to {d}.")
if debug:
print("Reducing depth to: ", d)
else:
cot_data.append(f"Errors occur for {obj['new_object_id']} with depth 1: {errors}. The layout creation failed.")
print(f"Errors occur for {obj['new_object_id']} with depth 1: {errors}. The layout creation failed.")
self.calculation_data = []
return errors
error_flag = True
cot_data.append(f"Delete positions for objects at or beyond the current depth {d} in order to reposition the objects.")
for del_item in scene_graph_wo_layout:
if depth_scene_graph[del_item["new_object_id"]] >= d:
if "position" in del_item.keys() and not point_bbox[del_item["new_object_id"]]:
if debug:
print("Deleting position for: ", del_item["new_object_id"])
del del_item["position"]
errors = {}
break
# else:
# cot_data.append(f"No error is found.")
if not error_flag:
d += 1
cot_data.append("Save the scene graph.")
self.calculation_data = cot_data
print(cot_data)
print("\n")
os.makedirs("./results", exist_ok=True)
jsonname = re.sub(r'[^a-zA-Z0-9]', '_', self.user_input) + '.json'
self.result_file = os.path.join("./results", jsonname)
with open(self.result_file, "w") as file:
json.dump(self.scene_graph, file, indent=4)
def summary_calculation(self):
if self.calculation_data:
user_proxy, calculation_architect = calculation_summary_agents()
groupchat = CalculationGroupChat(
agents=[user_proxy, calculation_architect],
messages=[],
max_round=2
)
manager = GroupChatManager(groupchat=groupchat, llm_config=gpt4_config, is_termination_msg=is_termination_msg)
user_proxy.initiate_chat(
manager,
message=f"""
The room has the size {self.room_dimensions[0]}m x {self.room_dimensions[1]}m x {self.room_dimensions[2]}m
User Input (in triple backquotes):
```
{self.calculation_data}
```
Room layout elements in the room (in triple backquotes):
```
['south_wall', 'north_wall', 'west_wall', 'east_wall', 'middle of the room', 'ceiling']
```
json
""",
)
self.calculation_sum = groupchat.messages[-1]["content"]
os.makedirs("./Results_data", exist_ok=True)
filename = re.sub(r'[^a-zA-Z0-9]', '_', self.user_input) + '.md'
full_path = os.path.join("./Results_data", filename)
with open(full_path, 'w', encoding='utf-8') as file:
file.write(self.language_sum)
file.write('\n\n## 6. **Object Placement**\n')
file.write(self.calculation_sum)
else:
pass
|