--- base_model: - Wan-AI/Wan2.2-I2V-A14B license: apache-2.0 pipeline_tag: image-to-video --- # FastVideo CausalWan2.2-I2V-A14B-Preview-Diffusers Model

FastVideo Team
Github | Project Page
## Disclaimer Note that this is a preview model, meaning there are still quality issues. The inference speed is also unoptimized. ## Introduction We're excited to introduce the **CausalWan2.2 I2V A14B series**—a new line of models. --- ## Model Overview - 8-step inference is supported. - Try it out on **FastVideo** — we support a wide range of GPUs from **H100** to **4090**, and also support **Mac** users! ## Inference code ```python from fastvideo import VideoGenerator, SamplingParam import json # from fastvideo.configs.sample import SamplingParam OUTPUT_PATH = "video_samples_self_forcing_causal_wan2_2_14B_i2v" def main(): # FastVideo will automatically use the optimal default arguments for the # model. # If a local path is provided, FastVideo will make a best effort # attempt to identify the optimal arguments. generator = VideoGenerator.from_pretrained( "FastVideo/SFWan2.2-I2V-A14B-Preview-Diffusers", # FastVideo will automatically handle distributed setup num_gpus=1, use_fsdp_inference=True, dit_cpu_offload=True, # DiT need to be offloaded for MoE dit_precision="fp32", vae_cpu_offload=False, text_encoder_cpu_offload=True, dmd_denoising_steps=[1000, 850, 700, 550, 350, 275, 200, 125], # Set pin_cpu_memory to false if CPU RAM is limited and there're no frequent CPU-GPU transfer pin_cpu_memory=True, # image_encoder_cpu_offload=False, ) sampling_param = SamplingParam.from_pretrained("FastVideo/SFWan2.2-I2V-A14B-Preview-Diffusers") sampling_param.num_frames = 81 sampling_param.width = 832 sampling_param.height = 480 sampling_param.seed = 1000 with open("prompts/mixkit_i2v.jsonl", "r") as f: prompt_image_pairs = json.load(f) for prompt_image_pair in prompt_image_pairs: prompt = prompt_image_pair["prompt"] image_path = prompt_image_pair["image_path"] _ = generator.generate_video(prompt, image_path=image_path, output_path=OUTPUT_PATH, save_video=True, sampling_param=sampling_param) if __name__ == "__main__": main() ```