""" Helion-OSC Evaluation Script Comprehensive evaluation suite for code generation and mathematical reasoning """ import os import json import torch import logging import numpy as np from typing import List, Dict, Any, Optional, Tuple from dataclasses import dataclass, field from tqdm import tqdm import subprocess import tempfile import signal from contextlib import contextmanager import multiprocessing as mp from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset import re logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) @dataclass class EvaluationConfig: """Configuration for evaluation""" model_name: str = "DeepXR/Helion-OSC" device: str = "cuda" if torch.cuda.is_available() else "cpu" batch_size: int = 4 max_length: int = 2048 temperature: float = 0.7 top_p: float = 0.95 num_samples: int = 1 timeout: int = 5 # seconds for code execution output_dir: str = "./evaluation_results" class TimeoutException(Exception): """Exception raised when code execution times out""" pass @contextmanager def time_limit(seconds): """Context manager for timing out code execution""" def signal_handler(signum, frame): raise TimeoutException("Code execution timed out") signal.signal(signal.SIGALRM, signal_handler) signal.alarm(seconds) try: yield finally: signal.alarm(0) class CodeExecutor: """Safe code execution environment""" @staticmethod def execute_python(code: str, timeout: int = 5) -> Tuple[bool, str]: """ Execute Python code safely Args: code: Python code to execute timeout: Timeout in seconds Returns: Tuple of (success, output/error) """ with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f: f.write(code) temp_file = f.name try: result = subprocess.run( ['python', temp_file], capture_output=True, text=True, timeout=timeout ) os.unlink(temp_file) if result.returncode == 0: return True, result.stdout else: return False, result.stderr except subprocess.TimeoutExpired: os.unlink(temp_file) return False, "Execution timed out" except Exception as e: if os.path.exists(temp_file): os.unlink(temp_file) return False, str(e) @staticmethod def check_syntax(code: str, language: str = "python") -> Tuple[bool, str]: """ Check code syntax without execution Args: code: Code to check language: Programming language Returns: Tuple of (is_valid, error_message) """ if language.lower() == "python": try: compile(code, '', 'exec') return True, "" except SyntaxError as e: return False, str(e) return True, "Syntax checking not implemented for this language" class HumanEvalEvaluator: """Evaluator for HumanEval benchmark""" def __init__(self, config: EvaluationConfig): self.config = config self.tokenizer = AutoTokenizer.from_pretrained(config.model_name) self.model = AutoModelForCausalLM.from_pretrained( config.model_name, torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32, device_map="auto" if config.device == "cuda" else None ) if config.device == "cpu": self.model = self.model.to(config.device) self.model.eval() self.executor = CodeExecutor() def load_humaneval(self) -> List[Dict]: """Load HumanEval dataset""" logger.info("Loading HumanEval dataset...") dataset = load_dataset("openai_humaneval", split="test") return list(dataset) def generate_solution(self, prompt: str) -> str: """Generate code solution for a prompt""" inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device) with torch.no_grad(): outputs = self.model.generate( **inputs, max_length=self.config.max_length, temperature=self.config.temperature, top_p=self.config.top_p, do_sample=True, pad_token_id=self.tokenizer.eos_token_id ) generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the new generation solution = generated[len(prompt):].strip() return solution def test_solution(self, solution: str, test_code: str) -> bool: """Test a solution against test cases""" full_code = solution + "\n" + test_code success, output = self.executor.execute_python(full_code, self.config.timeout) return success def evaluate(self) -> Dict[str, float]: """Run HumanEval evaluation""" logger.info("Starting HumanEval evaluation...") problems = self.load_humaneval() results = { "total": len(problems), "passed": 0, "failed": 0, "syntax_errors": 0, "runtime_errors": 0, "timeouts": 0 } for problem in tqdm(problems, desc="Evaluating HumanEval"): prompt = problem["prompt"] test = problem["test"] entry_point = problem["entry_point"] # Generate solution solution = self.generate_solution(prompt) # Check syntax is_valid, error = self.executor.check_syntax(solution) if not is_valid: results["syntax_errors"] += 1 results["failed"] += 1 continue # Test solution try: if self.test_solution(solution, test): results["passed"] += 1 else: results["failed"] += 1 results["runtime_errors"] += 1 except TimeoutException: results["failed"] += 1 results["timeouts"] += 1 # Calculate pass@1 results["pass@1"] = results["passed"] / results["total"] logger.info(f"HumanEval Results: {results}") return results class MBPPEvaluator: """Evaluator for MBPP (Mostly Basic Python Problems) benchmark""" def __init__(self, config: EvaluationConfig): self.config = config self.tokenizer = AutoTokenizer.from_pretrained(config.model_name) self.model = AutoModelForCausalLM.from_pretrained( config.model_name, torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32, device_map="auto" if config.device == "cuda" else None ) if config.device == "cpu": self.model = self.model.to(config.device) self.model.eval() self.executor = CodeExecutor() def load_mbpp(self) -> List[Dict]: """Load MBPP dataset""" logger.info("Loading MBPP dataset...") dataset = load_dataset("mbpp", split="test") return list(dataset) def generate_solution(self, prompt: str) -> str: """Generate code solution""" inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device) with torch.no_grad(): outputs = self.model.generate( **inputs, max_length=self.config.max_length, temperature=self.config.temperature, top_p=self.config.top_p, do_sample=True, pad_token_id=self.tokenizer.eos_token_id ) generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True) solution = generated[len(prompt):].strip() return solution def evaluate(self) -> Dict[str, float]: """Run MBPP evaluation""" logger.info("Starting MBPP evaluation...") problems = self.load_mbpp() results = { "total": len(problems), "passed": 0, "failed": 0 } for problem in tqdm(problems, desc="Evaluating MBPP"): prompt = problem["text"] test_cases = problem["test_list"] # Generate solution solution = self.generate_solution(prompt) # Test against all test cases all_passed = True for test in test_cases: test_code = solution + "\n" + test success, _ = self.executor.execute_python(test_code, self.config.timeout) if not success: all_passed = False break if all_passed: results["passed"] += 1 else: results["failed"] += 1 results["pass@1"] = results["passed"] / results["total"] logger.info(f"MBPP Results: {results}") return results class GSM8KEvaluator: """Evaluator for GSM8K mathematical reasoning benchmark""" def __init__(self, config: EvaluationConfig): self.config = config self.tokenizer = AutoTokenizer.from_pretrained(config.model_name) self.model = AutoModelForCausalLM.from_pretrained( config.model_name, torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32, device_map="auto" if config.device == "cuda" else None ) if config.device == "cpu": self.model = self.model.to(config.device) self.model.eval() def load_gsm8k(self) -> List[Dict]: """Load GSM8K dataset""" logger.info("Loading GSM8K dataset...") dataset = load_dataset("gsm8k", "main", split="test") return list(dataset) def extract_answer(self, text: str) -> Optional[float]: """Extract numerical answer from text""" # Look for patterns like "#### 42" or "The answer is 42" patterns = [ r'####\s*(-?\d+\.?\d*)', r'answer is\s*(-?\d+\.?\d*)', r'equals?\s*(-?\d+\.?\d*)', r'=\s*(-?\d+\.?\d*)', r'\$?\s*(-?\d+\.?\d*)\s*$' ] for pattern in patterns: match = re.search(pattern, text, re.IGNORECASE) if match: try: return float(match.group(1)) except: continue return None def generate_solution(self, problem: str) -> str: """Generate solution for math problem""" prompt = f"Problem: {problem}\n\nLet's solve this step by step:\n" inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device) with torch.no_grad(): outputs = self.model.generate( **inputs, max_length=self.config.max_length, temperature=0.3, top_p=0.9, do_sample=False, pad_token_id=self.tokenizer.eos_token_id ) generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return generated def evaluate(self) -> Dict[str, float]: """Run GSM8K evaluation""" logger.info("Starting GSM8K evaluation...") problems = self.load_gsm8k() results = { "total": len(problems), "correct": 0, "incorrect": 0, "no_answer": 0 } for problem in tqdm(problems, desc="Evaluating GSM8K"): question = problem["question"] correct_answer_text = problem["answer"] # Extract correct answer correct_answer = self.extract_answer(correct_answer_text) if correct_answer is None: continue # Generate solution solution = self.generate_solution(question) # Extract predicted answer predicted_answer = self.extract_answer(solution) if predicted_answer is None: results["no_answer"] += 1 results["incorrect"] += 1 elif abs(predicted_answer - correct_answer) < 1e-5: results["correct"] += 1 else: results["incorrect"] += 1 results["accuracy"] = results["correct"] / results["total"] logger.info(f"GSM8K Results: {results}") return results class ComprehensiveEvaluator: """Run comprehensive evaluation across all benchmarks""" def __init__(self, config: EvaluationConfig): self.config = config os.makedirs(config.output_dir, exist_ok=True) def run_all_evaluations(self) -> Dict[str, Any]: """Run all evaluation benchmarks""" logger.info("Starting comprehensive evaluation...") all_results = {} # HumanEval try: logger.info("\n" + "="*80) logger.info("Running HumanEval Evaluation") logger.info("="*80) humaneval_evaluator = HumanEvalEvaluator(self.config) all_results["humaneval"] = humaneval_evaluator.evaluate() except Exception as e: logger.error(f"HumanEval evaluation failed: {e}") all_results["humaneval"] = {"error": str(e)} # MBPP try: logger.info("\n" + "="*80) logger.info("Running MBPP Evaluation") logger.info("="*80) mbpp_evaluator = MBPPEvaluator(self.config) all_results["mbpp"] = mbpp_evaluator.evaluate() except Exception as e: logger.error(f"MBPP evaluation failed: {e}") all_results["mbpp"] = {"error": str(e)} # GSM8K try: logger.info("\n" + "="*80) logger.info("Running GSM8K Evaluation") logger.info("="*80) gsm8k_evaluator = GSM8KEvaluator(self.config) all_results["gsm8k"] = gsm8k_evaluator.evaluate() except Exception as e: logger.error(f"GSM8K evaluation failed: {e}") all_results["gsm8k"] = {"error": str(e)} # Save results self.save_results(all_results) # Print summary self.print_summary(all_results) return all_results def save_results(self, results: Dict[str, Any]): """Save evaluation results to file""" output_file = os.path.join(self.config.output_dir, "evaluation_results.json") with open(output_file, 'w') as f: json.dump(results, f, indent=2) logger.info(f"Results saved to {output_file}") def print_summary(self, results: Dict[str, Any]): """Print evaluation summary""" logger.info("\n" + "="*80) logger.info("EVALUATION SUMMARY") logger.info("="*80) if "humaneval" in results and "pass@1" in results["humaneval"]: logger.info(f"HumanEval Pass@1: {results['humaneval']['pass@1']:.3f}") if "mbpp" in results and "pass@1" in results["mbpp"]: logger.info(f"MBPP Pass@1: {results['mbpp']['pass@1']:.3f}") if "gsm8k" in results and "accuracy" in results["gsm8k"]: logger.info(f"GSM8K Accuracy: {results['gsm8k']['accuracy']:.3f}") logger.info("="*80) def main(): """Main evaluation script""" import argparse parser = argparse.ArgumentParser(description="Evaluate Helion-OSC model") parser.add_argument("--model_name", type=str, default="DeepXR/Helion-OSC") parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu") parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--max_length", type=int, default=2048) parser.add_argument("--temperature", type=float, default=0.7) parser.add_argument("--top_p", type=float, default=0.95) parser.add_argument("--timeout", type=int, default=5) parser.add_argument("--output_dir", type=str, default="./evaluation_results") parser.add_argument("--benchmark", type=str, choices=["all", "humaneval", "mbpp", "gsm8k"], default="all") args = parser.parse_args() config = EvaluationConfig( model_name=args.model_name, device=args.device, batch_size=args.batch_size, max_length=args.max_length, temperature=args.temperature, top_p=args.top_p, timeout=args.timeout, output_dir=args.output_dir ) if args.benchmark == "all": evaluator = ComprehensiveEvaluator(config) evaluator.run_all_evaluations() elif args.benchmark == "humaneval": evaluator = HumanEvalEvaluator(config) evaluator.evaluate() elif args.benchmark == "mbpp": evaluator = MBPPEvaluator(config) evaluator.evaluate() elif args.benchmark == "gsm8k": evaluator = GSM8KEvaluator(config) evaluator.evaluate() if __name__ == "__main__": main()