Update model card for Tora2
Browse filesThis PR updates the model card to reflect the new model, Tora2, as presented in the paper [Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation](https://huggingface.co/papers/2507.05963).
Specifically, it:
- Updates the model title and abstract to reflect Tora2.
- Updates the paper link to the official Hugging Face paper page for Tora2.
- Updates the project page link to the dedicated Tora2 project page.
- Enriches the metadata with structured links for the paper, project page, and GitHub repository.
- Adds new tags (`tora2`, `multi-entity-video-generation`) for better discoverability.
- Integrates comprehensive usage sections (Installation, Inference, Training, etc.) directly from the GitHub repository README to provide a more self-contained and useful resource on the Hub.
- Updates the citation to reflect the Tora2 paper.
|
@@ -1,30 +1,36 @@
|
|
| 1 |
---
|
| 2 |
-
license: other
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
base_model:
|
| 6 |
- THUDM/CogVideoX-5b
|
| 7 |
-
|
|
|
|
| 8 |
library_name: diffusers
|
|
|
|
|
|
|
| 9 |
tags:
|
| 10 |
- video
|
| 11 |
- video-generation
|
| 12 |
- cogvideox
|
| 13 |
- alibaba
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
|
|
|
| 15 |
<div align="center">
|
| 16 |
|
| 17 |
<img src="icon.jpg" width="250"/>
|
| 18 |
|
| 19 |
-
<h2><center>
|
| 20 |
|
| 21 |
Zhenghao Zhang\*, Junchao Liao\*, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, Weizhi Wang
|
| 22 |
|
| 23 |
\* equal contribution
|
| 24 |
<br>
|
| 25 |
|
| 26 |
-
<a href='https://
|
| 27 |
-
<a href='https://ali-videoai.github.io/
|
| 28 |
<a href="https://github.com/alibaba/Tora"><img src='https://img.shields.io/badge/Github-Link-orange'></a>
|
| 29 |
<a href='https://www.modelscope.cn/studios/xiaoche/Tora'><img src='https://img.shields.io/badge/🤖_ModelScope-ZH_demo-%23654dfc'></a>
|
| 30 |
<a href='https://www.modelscope.cn/studios/Alibaba_Research_Intelligence_Computing/Tora_En'><img src='https://img.shields.io/badge/🤖_ModelScope-EN_demo-%23654dfc'></a>
|
|
@@ -36,15 +42,16 @@ Zhenghao Zhang\*, Junchao Liao\*, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu
|
|
| 36 |
<a href='https://huggingface.co/Alibaba-Research-Intelligence-Computing/Tora_T2V_diffusers'><img src='https://img.shields.io/badge/🤗_HuggingFace-T2V_weights(diffusers)-%23ff9e0e'></a>
|
| 37 |
</div>
|
| 38 |
|
| 39 |
-
|
| 40 |
-
## Please visit our [Github repo](https://github.com/alibaba/Tora) for more details.
|
| 41 |
|
| 42 |
## 💡 Abstract
|
| 43 |
|
| 44 |
-
Recent
|
| 45 |
|
| 46 |
## 📣 Updates
|
| 47 |
|
|
|
|
|
|
|
| 48 |
- `2025/01/06` 🔥🔥We released Tora Image-to-Video, including inference code and model weights.
|
| 49 |
- `2024/12/13` SageAttention2 and model compilation are supported in diffusers version. Tested on the A10, these approaches speed up every inference step by approximately 52%, except for the first step.
|
| 50 |
- `2024/12/09` 🔥🔥Diffusers version of Tora and the corresponding model weights are released. Inference VRAM requirements are reduced to around 5 GiB. Please refer to [this](diffusers-version/README.md) for details.
|
|
@@ -56,6 +63,21 @@ Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable
|
|
| 56 |
- `2024/08/27` We released our v2 paper including appendix.
|
| 57 |
- `2024/07/31` We submitted our paper on arXiv and released our project page.
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
## 🎞️ Showcases
|
| 60 |
|
| 61 |
https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
|
|
@@ -66,6 +88,190 @@ https://github.com/user-attachments/assets/4026c23d-229d-45d7-b5be-6f3eb9e4fd50
|
|
| 66 |
|
| 67 |
All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
## 🤝 Acknowledgements
|
| 70 |
|
| 71 |
We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project:
|
|
@@ -84,13 +290,11 @@ Special thanks to the contributors of these libraries for their hard work and de
|
|
| 84 |
## 📚 Citation
|
| 85 |
|
| 86 |
```bibtex
|
| 87 |
-
@
|
| 88 |
-
title={
|
| 89 |
-
author={Zhenghao
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
primaryClass={cs.CV},
|
| 94 |
-
url={https://arxiv.org/abs/2407.21705},
|
| 95 |
}
|
| 96 |
```
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model:
|
| 3 |
- THUDM/CogVideoX-5b
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
library_name: diffusers
|
| 7 |
+
license: other
|
| 8 |
+
pipeline_tag: text-to-video
|
| 9 |
tags:
|
| 10 |
- video
|
| 11 |
- video-generation
|
| 12 |
- cogvideox
|
| 13 |
- alibaba
|
| 14 |
+
- tora2
|
| 15 |
+
- multi-entity-video-generation
|
| 16 |
+
paper: https://huggingface.co/papers/2507.05963
|
| 17 |
+
url: https://ali-videoai.github.io/Tora2_page/
|
| 18 |
+
repo_code: https://github.com/alibaba/Tora
|
| 19 |
---
|
| 20 |
+
|
| 21 |
<div align="center">
|
| 22 |
|
| 23 |
<img src="icon.jpg" width="250"/>
|
| 24 |
|
| 25 |
+
<h2><center>Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation</h2>
|
| 26 |
|
| 27 |
Zhenghao Zhang\*, Junchao Liao\*, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, Weizhi Wang
|
| 28 |
|
| 29 |
\* equal contribution
|
| 30 |
<br>
|
| 31 |
|
| 32 |
+
<a href='https://huggingface.co/papers/2507.05963'><img src='https://img.shields.io/badge/Paper-2507.05963-red'></a>
|
| 33 |
+
<a href='https://ali-videoai.github.io/Tora2_page/'><img src='https://img.shields.io/badge/Project-Page-Blue'></a>
|
| 34 |
<a href="https://github.com/alibaba/Tora"><img src='https://img.shields.io/badge/Github-Link-orange'></a>
|
| 35 |
<a href='https://www.modelscope.cn/studios/xiaoche/Tora'><img src='https://img.shields.io/badge/🤖_ModelScope-ZH_demo-%23654dfc'></a>
|
| 36 |
<a href='https://www.modelscope.cn/studios/Alibaba_Research_Intelligence_Computing/Tora_En'><img src='https://img.shields.io/badge/🤖_ModelScope-EN_demo-%23654dfc'></a>
|
|
|
|
| 42 |
<a href='https://huggingface.co/Alibaba-Research-Intelligence-Computing/Tora_T2V_diffusers'><img src='https://img.shields.io/badge/🤗_HuggingFace-T2V_weights(diffusers)-%23ff9e0e'></a>
|
| 43 |
</div>
|
| 44 |
|
| 45 |
+
This is the official repository for the paper "Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation".
|
|
|
|
| 46 |
|
| 47 |
## 💡 Abstract
|
| 48 |
|
| 49 |
+
Recent advances in diffusion transformer models for motion-guided video generation, such as Tora, have shown significant progress. In this paper, we present Tora2, an enhanced version of Tora, which introduces several design improvements to expand its capabilities in both appearance and motion customization. Specifically, we introduce a decoupled personalization extractor that generates comprehensive personalization embeddings for multiple open-set entities, better preserving fine-grained visual details compared to previous methods. Building on this, we design a gated self-attention mechanism to integrate trajectory, textual description, and visual information for each entity. This innovation significantly reduces misalignment in multimodal conditioning during training. Moreover, we introduce a contrastive loss that jointly optimizes trajectory dynamics and entity consistency through explicit mapping between motion and personalization embeddings. Tora2 is, to our best knowledge, the first method to achieve simultaneous multi-entity customization of appearance and motion for video generation. Experimental results demonstrate that Tora2 achieves competitive performance with state-of-the-art customization methods while providing advanced motion control capabilities, which marks a critical advancement in multi-condition video generation.
|
| 50 |
|
| 51 |
## 📣 Updates
|
| 52 |
|
| 53 |
+
- `2025/07/08` 🔥🔥 Our latest work, [Tora2](https://ali-videoai.github.io/Tora2_page/), has been accepted by ACM MM25. Tora2 builds on Tora with design improvements, enabling enhanced appearance and motion customization for multiple entities.
|
| 54 |
+
- `2025/05/24` We open-sourced a LoRA-finetuned model of [Wan](https://github.com/Wan-Video/Wan2.1). It turns things in the image into fluffy toys. Check this out: https://github.com/alibaba/wan-toy-transform
|
| 55 |
- `2025/01/06` 🔥🔥We released Tora Image-to-Video, including inference code and model weights.
|
| 56 |
- `2024/12/13` SageAttention2 and model compilation are supported in diffusers version. Tested on the A10, these approaches speed up every inference step by approximately 52%, except for the first step.
|
| 57 |
- `2024/12/09` 🔥🔥Diffusers version of Tora and the corresponding model weights are released. Inference VRAM requirements are reduced to around 5 GiB. Please refer to [this](diffusers-version/README.md) for details.
|
|
|
|
| 63 |
- `2024/08/27` We released our v2 paper including appendix.
|
| 64 |
- `2024/07/31` We submitted our paper on arXiv and released our project page.
|
| 65 |
|
| 66 |
+
## 📑 Table of Contents
|
| 67 |
+
|
| 68 |
+
- [🎞️ Showcases](#%EF%B8%8F-showcases)
|
| 69 |
+
- [✅ TODO List](#-todo-list)
|
| 70 |
+
- [🧨 Diffusers verision](#-diffusers-verision)
|
| 71 |
+
- [🐍 Installation](#-installation)
|
| 72 |
+
- [📦 Model Weights](#-model-weights)
|
| 73 |
+
- [🔄 Inference](#-inference)
|
| 74 |
+
- [🖥️ Gradio Demo](#%EF%B8%8F-gradio-demo)
|
| 75 |
+
- [🧠 Training](#-training)
|
| 76 |
+
- [🎯 Troubleshooting](#-troubleshooting)
|
| 77 |
+
- [🤝 Acknowledgements](#-acknowledgements)
|
| 78 |
+
- [📄 Our previous work](#-our-previous-work)
|
| 79 |
+
- [📚 Citation](#-citation)
|
| 80 |
+
|
| 81 |
## 🎞️ Showcases
|
| 82 |
|
| 83 |
https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
|
|
|
|
| 88 |
|
| 89 |
All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
|
| 90 |
|
| 91 |
+
## ✅ TODO List
|
| 92 |
+
|
| 93 |
+
- [x] Release our inference code and model weights
|
| 94 |
+
- [x] Provide a ModelScope Demo
|
| 95 |
+
- [x] Release our training code
|
| 96 |
+
- [x] Release diffusers version and optimize the GPU memory usage
|
| 97 |
+
- [x] Release complete version of Tora
|
| 98 |
+
|
| 99 |
+
## 🧨 Diffusers verision
|
| 100 |
+
|
| 101 |
+
Please refer to [the diffusers version](diffusers-version/README.md) for details.
|
| 102 |
+
|
| 103 |
+
## 🐍 Installation
|
| 104 |
+
|
| 105 |
+
Please make sure your Python version is between 3.10 and 3.12, inclusive of both 3.10 and 3.12.
|
| 106 |
+
|
| 107 |
+
```bash
|
| 108 |
+
# Clone this repository.
|
| 109 |
+
git clone https://github.com/alibaba/Tora.git
|
| 110 |
+
cd Tora
|
| 111 |
+
|
| 112 |
+
# Install Pytorch (we use Pytorch 2.4.0) and torchvision following the official instructions: https://pytorch.org/get-started/previous-versions/. For example:
|
| 113 |
+
conda create -n tora python==3.10
|
| 114 |
+
conda activate tora
|
| 115 |
+
conda install pytorch==2.4.0 torchvision==0.19.0 pytorch-cuda=12.1 -c pytorch -c nvidia
|
| 116 |
+
|
| 117 |
+
# Install requirements
|
| 118 |
+
cd modules/SwissArmyTransformer
|
| 119 |
+
pip install -e .
|
| 120 |
+
cd ../../sat
|
| 121 |
+
pip install -r requirements.txt
|
| 122 |
+
cd ..
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## 📦 Model Weights
|
| 126 |
+
|
| 127 |
+
### Folder Structure
|
| 128 |
+
|
| 129 |
+
```
|
| 130 |
+
Tora
|
| 131 |
+
└── sat
|
| 132 |
+
└── ckpts
|
| 133 |
+
├── t5-v1_1-xxl
|
| 134 |
+
│ ├── model-00001-of-00002.safetensors
|
| 135 |
+
│ └── ...
|
| 136 |
+
├── vae
|
| 137 |
+
│ └── 3d-vae.pt
|
| 138 |
+
├── tora
|
| 139 |
+
│ ├── i2v
|
| 140 |
+
│ │ └── mp_rank_00_model_states.pt
|
| 141 |
+
│ └── t2v
|
| 142 |
+
│ └── mp_rank_00_model_states.pt
|
| 143 |
+
└── CogVideoX-5b-sat # for training stage 1
|
| 144 |
+
└── mp_rank_00_model_states.pt
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
### Download Links
|
| 148 |
+
|
| 149 |
+
*Note: Downloading the `tora` weights requires following the [CogVideoX License](CogVideoX_LICENSE).* You can choose one of the following options: HuggingFace, ModelScope, or native links.
|
| 150 |
+
After downloading the model weights, you can put them in the `Tora/sat/ckpts` folder.
|
| 151 |
+
|
| 152 |
+
#### HuggingFace
|
| 153 |
+
|
| 154 |
+
```bash
|
| 155 |
+
# This can be faster
|
| 156 |
+
pip install "huggingface_hub[hf_transfer]"
|
| 157 |
+
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Alibaba-Research-Intelligence-Computing/Tora --local-dir ckpts
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
or
|
| 161 |
+
|
| 162 |
+
```bash
|
| 163 |
+
# use git
|
| 164 |
+
git lfs install
|
| 165 |
+
git clone https://huggingface.co/Alibaba-Research-Intelligence-Computing/Tora
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
#### ModelScope
|
| 169 |
+
|
| 170 |
+
- SDK
|
| 171 |
+
|
| 172 |
+
```bash
|
| 173 |
+
from modelscope import snapshot_download
|
| 174 |
+
model_dir = snapshot_download('xiaoche/Tora')
|
| 175 |
+
```
|
| 176 |
+
|
| 177 |
+
- Git
|
| 178 |
+
|
| 179 |
+
```bash
|
| 180 |
+
git clone https://www.modelscope.cn/xiaoche/Tora.git
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
#### Native
|
| 184 |
+
|
| 185 |
+
- Download the VAE and T5 model following [CogVideo](https://github.com/THUDM/CogVideo/blob/main/sat/README.md#2-download-model-weights):
|
| 186 |
+
- VAE: https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
|
| 187 |
+
- T5: [text_encoder](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/text_encoder), [tokenizer](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/tokenizer)
|
| 188 |
+
- Tora t2v model weights: [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/mp_rank_00_model_states.pt). Downloading this weight requires following the [CogVideoX License](CogVideoX_LICENSE).
|
| 189 |
+
|
| 190 |
+
## 🔄 Inference
|
| 191 |
+
|
| 192 |
+
### Text to Video
|
| 193 |
+
It requires around 30 GiB GPU memory tested on NVIDIA A100.
|
| 194 |
+
|
| 195 |
+
```bash
|
| 196 |
+
cd sat
|
| 197 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU sample_video.py --base configs/tora/model/cogvideox_5b_tora.yaml configs/tora/inference_sparse.yaml --load ckpts/tora/t2v --output-dir samples --point_path trajs/coaster.txt --input-file assets/text/t2v/examples.txt
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
You can change the `--input-file` and `--point_path` to your own prompts and trajectory points files. Please note that the trajectory is drawn on a 256x256 canvas.
|
| 201 |
+
|
| 202 |
+
Replace `$N_GPU` with the number of GPUs you want to use.
|
| 203 |
+
|
| 204 |
+
### Image to Video
|
| 205 |
+
|
| 206 |
+
```bash
|
| 207 |
+
cd sat
|
| 208 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU sample_video.py --base configs/tora/model/cogvideox_5b_tora_i2v.yaml configs/tora/inference_sparse.yaml --load ckpts/tora/i2v --output-dir samples --point_path trajs/sawtooth.txt --input-file assets/text/i2v/examples.txt --img_dir assets/images --image2video
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
The first frame images should be placed in the `--img_dir`. The names of these images should be specified in the corresponding text prompt in `--input-file`, seperated by `@@`.
|
| 212 |
+
|
| 213 |
+
### Recommendations for Text Prompts
|
| 214 |
+
|
| 215 |
+
For text prompts, we highly recommend using GPT-4 to enhance the details. Simple prompts may negatively impact both visual quality and motion control effectiveness.
|
| 216 |
+
|
| 217 |
+
You can refer to the following resources for guidance:
|
| 218 |
+
|
| 219 |
+
- [CogVideoX Documentation](https://github.com/THUDM/CogVideo/blob/main/inference/convert_demo.py)
|
| 220 |
+
- [OpenSora Scripts](https://github.com/hpcaitech/Open-Sora/blob/main/scripts/inference.py)
|
| 221 |
+
|
| 222 |
+
## 🖥️ Gradio Demo
|
| 223 |
+
|
| 224 |
+
Usage:
|
| 225 |
+
|
| 226 |
+
```bash
|
| 227 |
+
cd sat
|
| 228 |
+
python app.py --load ckpts/tora/t2v
|
| 229 |
+
```
|
| 230 |
+
|
| 231 |
+
## 🧠 Training
|
| 232 |
+
|
| 233 |
+
### Data Preparation
|
| 234 |
+
|
| 235 |
+
Following this guide https://github.com/THUDM/CogVideo/blob/main/sat/README.md#preparing-the-dataset, structure the datasets as follows:
|
| 236 |
+
|
| 237 |
+
```
|
| 238 |
+
.
|
| 239 |
+
├── labels
|
| 240 |
+
│ ├── 1.txt
|
| 241 |
+
│ ├── 2.txt
|
| 242 |
+
│ ├── ...
|
| 243 |
+
└── videos
|
| 244 |
+
├── 1.mp4
|
| 245 |
+
├── 2.mp4
|
| 246 |
+
├── ...
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
Training data examples are in `sat/training_examples`
|
| 250 |
+
|
| 251 |
+
### Text to Video
|
| 252 |
+
|
| 253 |
+
It requires around 60 GiB GPU memory tested on NVIDIA A100.
|
| 254 |
+
|
| 255 |
+
Replace `$N_GPU` with the number of GPUs you want to use.
|
| 256 |
+
|
| 257 |
+
- Stage 1
|
| 258 |
+
|
| 259 |
+
```bash
|
| 260 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU train_video.py --base configs/tora/model/cogvideox_5b_tora.yaml configs/tora/train_dense.yaml --experiment-name "t2v-stage1"
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
- Stage 2
|
| 264 |
+
|
| 265 |
+
```bash
|
| 266 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU train_video.py --base configs/tora/model/cogvideox_5b_tora.yaml configs/tora/train_sparse.yaml --experiment-name "t2v-stage2"
|
| 267 |
+
```
|
| 268 |
+
|
| 269 |
+
## 🎯 Troubleshooting
|
| 270 |
+
|
| 271 |
+
### 1. ValueError: Non-consecutive added token...
|
| 272 |
+
|
| 273 |
+
Upgrade the transformers package to 4.44.2. See [this](https://github.com/THUDM/CogVideo/issues/213) issue.
|
| 274 |
+
|
| 275 |
## 🤝 Acknowledgements
|
| 276 |
|
| 277 |
We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project:
|
|
|
|
| 290 |
## 📚 Citation
|
| 291 |
|
| 292 |
```bibtex
|
| 293 |
+
@article{zhang2025tora2,
|
| 294 |
+
title={Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation},
|
| 295 |
+
author={Zhang, Zhenghao and Liao, Junchao and Li, Menghao and Dai, Zuozhuo and Qiu, Bingxue and Zhu, Siyu and Qin, Long and Wang, Weizhi},
|
| 296 |
+
journal={arXiv preprint arXiv:2507.05963},
|
| 297 |
+
year={2025},
|
| 298 |
+
url={https://huggingface.co/papers/2507.05963},
|
|
|
|
|
|
|
| 299 |
}
|
| 300 |
```
|