Create scripts/gte_embedding.py
Browse files- scripts/gte_embedding.py +190 -0
scripts/gte_embedding.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import Dict, Optional, List, Tuple
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
import heapq
|
| 6 |
+
import json
|
| 7 |
+
import logging
|
| 8 |
+
import os
|
| 9 |
+
import queue
|
| 10 |
+
import sys
|
| 11 |
+
import time
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from collections import defaultdict
|
| 16 |
+
from torch.utils.data._utils.worker import ManagerWatchdog
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch.distributed as dist
|
| 19 |
+
from torch import nn, Tensor
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
from transformers import AutoModel, AutoTokenizer
|
| 22 |
+
from transformers.file_utils import ModelOutput
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class GTEEmbeddidng(nn.Module):
|
| 28 |
+
def __init__(self,
|
| 29 |
+
model_name: str = None,
|
| 30 |
+
normalized: bool = True,
|
| 31 |
+
pooling_method: str = 'cls',
|
| 32 |
+
use_fp16: bool = True,
|
| 33 |
+
device: str = None
|
| 34 |
+
):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.load_model(model_name)
|
| 37 |
+
self.vocab_size = self.model.config.vocab_size
|
| 38 |
+
self.normalized = normalized
|
| 39 |
+
self.pooling_method = pooling_method
|
| 40 |
+
if device:
|
| 41 |
+
self.device = torch.device(device)
|
| 42 |
+
else:
|
| 43 |
+
if torch.cuda.is_available():
|
| 44 |
+
self.device = torch.device("cuda")
|
| 45 |
+
elif torch.backends.mps.is_available():
|
| 46 |
+
self.device = torch.device("mps")
|
| 47 |
+
elif is_torch_npu_available():
|
| 48 |
+
self.device = torch.device("npu")
|
| 49 |
+
else:
|
| 50 |
+
self.device = torch.device("cpu")
|
| 51 |
+
use_fp16 = False
|
| 52 |
+
self.model.to(self.device)
|
| 53 |
+
self.sparse_linear.to(self.device)
|
| 54 |
+
if use_fp16:
|
| 55 |
+
self.model.half()
|
| 56 |
+
self.sparse_linear.half()
|
| 57 |
+
|
| 58 |
+
def load_model(self, model_name):
|
| 59 |
+
if not os.path.exists(model_name):
|
| 60 |
+
cache_folder = os.getenv('HF_HUB_CACHE')
|
| 61 |
+
model_name = snapshot_download(repo_id=model_name,
|
| 62 |
+
cache_dir=cache_folder,
|
| 63 |
+
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])
|
| 64 |
+
|
| 65 |
+
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 66 |
+
self.sparse_linear = torch.nn.Linear(in_features=self.model.config.hidden_size, out_features=1)
|
| 67 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 68 |
+
self.model.eval()
|
| 69 |
+
if os.path.exists(os.path.join(model_name, 'sparse_linear.pt')):
|
| 70 |
+
logger.info('loading existing sparse_linear---------')
|
| 71 |
+
self.load_pooler(model_dir=model_name)
|
| 72 |
+
else:
|
| 73 |
+
logger.warring('The parameters of sparse linear is not found')
|
| 74 |
+
|
| 75 |
+
def dense_embedding(self, hidden_state, mask):
|
| 76 |
+
if self.pooling_method == 'cls':
|
| 77 |
+
return hidden_state[:, 0]
|
| 78 |
+
elif self.pooling_method == 'mean':
|
| 79 |
+
s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
|
| 80 |
+
d = mask.sum(axis=1, keepdim=True).float()
|
| 81 |
+
return s / d
|
| 82 |
+
|
| 83 |
+
def sparse_embedding(self, hidden_state, input_ids, return_embedding: bool = True):
|
| 84 |
+
token_weights = torch.relu(self.sparse_linear(hidden_state))
|
| 85 |
+
return token_weights
|
| 86 |
+
|
| 87 |
+
def _process_token_weights(self, token_weights: np.ndarray, input_ids: list):
|
| 88 |
+
# conver to dict
|
| 89 |
+
result = defaultdict(int)
|
| 90 |
+
unused_tokens = set([self.tokenizer.cls_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id,
|
| 91 |
+
self.tokenizer.unk_token_id])
|
| 92 |
+
# token_weights = np.ceil(token_weights * 100)
|
| 93 |
+
for w, idx in zip(token_weights, input_ids):
|
| 94 |
+
if idx not in unused_tokens and w > 0:
|
| 95 |
+
token = self.tokenizer.decode([int(idx)])
|
| 96 |
+
if w > result[token]:
|
| 97 |
+
result[token] = w
|
| 98 |
+
return result
|
| 99 |
+
|
| 100 |
+
@torch.no_grad()
|
| 101 |
+
def encode(self,
|
| 102 |
+
texts: None,
|
| 103 |
+
dimension: int = None,
|
| 104 |
+
max_length: int = 8192,
|
| 105 |
+
batch_size: int = 16,
|
| 106 |
+
return_dense: bool = True,
|
| 107 |
+
return_sparse: bool = False):
|
| 108 |
+
if dimension is None:
|
| 109 |
+
dimension = self.model.config.hidden_size
|
| 110 |
+
if isinstance(texts, str):
|
| 111 |
+
texts = [texts]
|
| 112 |
+
num_texts = len(texts)
|
| 113 |
+
all_dense_vecs = []
|
| 114 |
+
all_token_weights = []
|
| 115 |
+
for n, i in enumerate(range(0, num_texts, batch_size)):
|
| 116 |
+
batch = texts[i: i + batch_size]
|
| 117 |
+
resulst = self._encode(batch, dimension, max_length, batch_size, return_dense, return_sparse)
|
| 118 |
+
if return_dense:
|
| 119 |
+
all_dense_vecs.append(resulst['dense_embeddings'])
|
| 120 |
+
if return_sparse:
|
| 121 |
+
all_token_weights.extend(resulst['token_weights'])
|
| 122 |
+
all_dense_vecs = torch.cat(all_dense_vecs, dim=0)
|
| 123 |
+
return {
|
| 124 |
+
"dense_embeddings": all_dense_vecs,
|
| 125 |
+
"token_weights": all_token_weights
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
@torch.no_grad()
|
| 129 |
+
def _encode(self,
|
| 130 |
+
texts: Dict[str, Tensor] = None,
|
| 131 |
+
dimension: int = None,
|
| 132 |
+
max_length: int = 1024,
|
| 133 |
+
batch_size: int = 16,
|
| 134 |
+
return_dense: bool = True,
|
| 135 |
+
return_sparse: bool = False):
|
| 136 |
+
|
| 137 |
+
text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
|
| 138 |
+
text_input = {k: v.to(self.model.device) for k,v in text_input.items()}
|
| 139 |
+
last_hidden_state = self.model(**text_input, return_dict=True).last_hidden_state
|
| 140 |
+
|
| 141 |
+
output = {}
|
| 142 |
+
if return_dense:
|
| 143 |
+
dense_vecs = self.dense_embedding(last_hidden_state, text_input['attention_mask'])
|
| 144 |
+
dense_vecs = dense_vecs[:, :dimension]
|
| 145 |
+
if self.normalized:
|
| 146 |
+
dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1)
|
| 147 |
+
output['dense_embeddings'] = dense_vecs
|
| 148 |
+
if return_sparse:
|
| 149 |
+
token_weights = self.sparse_embedding(last_hidden_state, text_input['input_ids']).squeeze(-1)
|
| 150 |
+
token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(),
|
| 151 |
+
text_input['input_ids'].cpu().numpy().tolist()))
|
| 152 |
+
output['token_weights'] = token_weights
|
| 153 |
+
|
| 154 |
+
return output
|
| 155 |
+
|
| 156 |
+
def load_pooler(self, model_dir):
|
| 157 |
+
sparse_state_dict = torch.load(os.path.join(model_dir, 'sparse_linear.pt'), map_location='cpu')
|
| 158 |
+
self.sparse_linear.load_state_dict(sparse_state_dict)
|
| 159 |
+
|
| 160 |
+
def _compute_sparse_scores(self, embs1, embs2):
|
| 161 |
+
scores = 0
|
| 162 |
+
for token, weight in embs1.items():
|
| 163 |
+
if token in embs2:
|
| 164 |
+
scores += weight * embs2[token]
|
| 165 |
+
return scores
|
| 166 |
+
|
| 167 |
+
def compute_sparse_scores(self, embs1, embs2):
|
| 168 |
+
scores = [self._compute_sparse_scores(emb1, emb2) for emb1, emb2 in zip(embs1, embs2)]
|
| 169 |
+
return np.array(scores)
|
| 170 |
+
|
| 171 |
+
def compute_dense_scores(self, embs1, embs2):
|
| 172 |
+
scores = torch.sum(embs1*embs2, dim=-1).cpu().detach().numpy()
|
| 173 |
+
return scores
|
| 174 |
+
|
| 175 |
+
@torch.no_grad()
|
| 176 |
+
def compute_scores(self,
|
| 177 |
+
text_pairs: List[Tuple[str, str]],
|
| 178 |
+
dimension: int = None,
|
| 179 |
+
max_length: int = 1024,
|
| 180 |
+
batch_size: int = 16,
|
| 181 |
+
dense_weight=1.0,
|
| 182 |
+
sparse_weight=0.1):
|
| 183 |
+
text1_list = [text_pair[0] for text_pair in text_pairs]
|
| 184 |
+
text2_list = [text_pair[1] for text_pair in text_pairs]
|
| 185 |
+
embs1 = self.encode(text1_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
|
| 186 |
+
embs2 = self.encode(text2_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
|
| 187 |
+
scores = self.compute_dense_scores(embs1['dense_embeddings'], embs2['dense_embeddings']) * dense_weight + \
|
| 188 |
+
self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight
|
| 189 |
+
scores = scores.tolist()
|
| 190 |
+
return scores
|